K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

9 tháng 8 2021

Ta có: \(2a+b^2=2a\left(a+b+c\right)+b^2=b^2+2a^2+2ab+2ac\)

\(\ge4ab+2ac+a^2\)

\(\Rightarrow\frac{a}{2a+b^2}\le\frac{a}{4ab+2ac+a^2}=\frac{1}{4b+2c+a}\)

\(\le\frac{1}{49}.\frac{49}{4b+2c+a}=\frac{1}{49}.\frac{\left(4+2+1\right)^2}{4b+2c+a}\)

\(\le\frac{1}{49}\left(\frac{16}{4b}+\frac{4}{2c}+\frac{1}{a}\right)=\frac{1}{49}\left(\frac{4}{b}+\frac{2}{c}+\frac{1}{a}\right)\)

CMTT: \(\frac{b}{2b+c^2}\le\frac{1}{49}\left(\frac{4}{c}+\frac{2}{a}+\frac{1}{b}\right);\frac{c}{2c+a^2}\le\frac{1}{49}\left(\frac{4}{a}+\frac{2}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{2a+b^2}+\frac{b}{2b+c^2}+\frac{c}{2c+a^2}\le\frac{1}{7}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)( đpcm )

7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???

30 tháng 5 2018

Ta có; \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)

Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\)

                 \(\frac{c^2}{c+a}+\frac{c+a}{4}\ge c\)

Cộng từng vế ta có:

\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}+\frac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{a+b+c}{2}=\frac{1}{2}\)

ta có:

a/a+b>a/a+b+c

b/b+c>b/a+b+c

c/a+c>c/a+b+c

cộng vế theo vế ta có 

a/a+b +b/b+c +c/c+a  > a+b+c / a+b+c =1 

=>a/a+b +b/b+c +c/c+a >1 (*)

lại có 

a/a+b< a+c/a+b+c

b/b+c < b+a / a+b+c 

c/c+b < c+b/a+b+c

cộng vế theo vế ta có 

a/a+b + b/b+c +c/c+a < 2(a+b+c)/ a+b+c

vì a,b,c là các số dương nên a/a+b + b/b+c +c/c+a < 2 (**)

từ (*) và (**) => ĐPCM

mik chắc chắn bài này chuẩn đúng 100% nhớ cho mik 5 sao nha

16 tháng 1 2017

Vì a;b;c là các số dương nên \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{a+c}>\frac{c}{a+b+c}\)

=>\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)(1)

Ta có: a<a+b <=> ac<ac+bc <=> ac+a2+ab<ac+bc+a2+ab

<=> \(a\left(c+a+b\right)< \left(a+b\right)\left(c+a\right)\Leftrightarrow\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

Chứng minh tương tự được :  \(\frac{b}{b+c}< \frac{a+b}{a+b+c};\frac{c}{a+c}< \frac{b+c}{a+b+c}\)

=>\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=2\) (2)

Từ (1) và (2) => đpcm

30 tháng 7 2018

\(\frac{1}{a^2}+\frac{1}{b^2}=\frac{a}{a^3}+\frac{1}{b^2}\ge\frac{\left(\sqrt{a}+1\right)^2}{a^3+b^2}\ge\frac{4\sqrt{a}}{a^3+b^2}\)

Cứ tiếp tục như vậy ta sẽ có đpcm. dấu = xảy ra khi a=b=c=1

31 tháng 8 2016

\(a^2\left(\frac{1}{b+c}-\frac{1}{a+c}\right)+b^2\left(\frac{1}{a+c}-\frac{1}{a+b}\right)+c^2\left(\frac{1}{a+b}-\frac{1}{b+c}\right)\ge0.\)

\(a^2\left(\frac{a-}{b+c}\frac{b}{a+c}\right)+b^2\left(\frac{b}{a+c}\frac{-c}{a+b}\right)+c^2\left(\frac{c-}{a+b}\frac{a}{b+c}\right)\ge0.\)

\(a^2\left(a^2-b^2\right)+b^2\left(b^2-c^2\right)+c^2\left(c^2-a^2\right)\ge0.\)

\(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2.\) cái này dễ rồi .

19 tháng 3 2020

đề bài sai rồi bạn nhé check lại đi 

20 tháng 3 2020

Sửa đề: \(\frac{a}{b}+\frac{a}{c}+\frac{c}{b}+\frac{c}{a}+\frac{b}{c}+\frac{b}{a}\ge\sqrt{2}\left(\Sigma\sqrt{\frac{1-a}{a}}\right)\)

or \(\Sigma\frac{b+c}{a}\ge\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\)

Theo AM-GM:\(\frac{b+c}{a}\ge2\sqrt{\frac{2\left(b+c\right)}{a}}-2\)

Tương tự và cộng lại: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-6\)

Mà: \(\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}\ge3\sqrt[6]{\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}}\ge6\)

Từ đó: \(VT\ge2\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}-\Sigma\sqrt{\frac{2\left(b+c\right)}{a}}=VP\)

Done!

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)