Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều đó là đương nhiên mà. Giả sử x2 + y2 + z2 = 5 thì x2 + y2 + z2 \(\le\) 5
Áp dụng bất đẳng thức Bu.nhia.cop.xki cho 2 bộ 3 số:
\(\left(a+2b+3c\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b+\sqrt{3}.\sqrt{3}c\right)^2\)
\(\le\left(1+2+3\right)\left(a^2+2b^2+3c^2\right)=6.6=36\)
\(\Rightarrow\left|a+2b+3c\right|\le6\)
\(\Rightarrow-6\le a+2b+3c\le6\)
đồ vô ơn.tao đã giải cho câu a rùi mà ko tick thi thui.xéo
a^2 + 2ab + 2b^2 - 2b= 8
<=> (a^2 + 2ab + b^2) + (b^2 - 2b + 1)=9
<=>(a + b)^2 + (b - 1)^2=9
Vì (b - 1)^2 >=0 nên (a + b)^2 =< 9
=> a + b =< 3.
Sửa đề: CMR: \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{1}{5}\left(a+b+c\right)\)
Chứng minh BĐT phụ:
\(\frac{x^2}{m}+\frac{y^2}{n}\ge\frac{\left(x+y\right)^2}{m+n}\)\(\forall m;n>0\)Tự chứng minh
Áp dụng bđt trên, ta có
\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{\left(a+b+c\right)^2}{2a+3b+2b+3c+2c+3a}=\frac{1}{5}\left(a+b+c\right)\)
Vậy..........