K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

Ta có :

\(a^2+b^2+c^2+d^2+e^2\)

\(=\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\)

Ta lại có :

\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\) \(\dfrac{a^2}{4}-ab+b^2\ge0\) \(\dfrac{\Rightarrow a^2}{4}+b^2\ge ab\)

Tương tự :

\(\dfrac{a^2}{4}+c^2\ge ac\)

\(\dfrac{a^2}{4}+d^2\ge ad\)

\(\dfrac{a^2}{4}+e^2\ge ae\)

\(\Rightarrow\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\ge ab+ac+ad+ae\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)

2 tháng 8 2017

cảm ơn bạn