\(p=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\s...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

lấy bút xóa mà xóa hết là khỏe

24 tháng 1 2016

\(botay.com.vn\)

NV
9 tháng 4 2019

Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1^2}{\sqrt{a}}+\frac{2^2}{\sqrt{b}}+\frac{3^2}{\sqrt{c}}\ge\frac{\left(1+2+3\right)^2}{\sqrt{a}+\sqrt{b}+\sqrt{c}}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\frac{1}{\sqrt{a}}=\frac{2}{\sqrt{b}}=\frac{3}{\sqrt{c}}\\\sqrt{a}+\sqrt{b}+\sqrt{c}=6\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{a}=1\\\sqrt{b}=2\\\sqrt{c}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=4\\c=9\end{matrix}\right.\)

12 tháng 10 2015

Áp dụng bất đẳng thức Mincpoxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)

(có thể chứng minh bằng biến đổi tương đương)

\(VT\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{a}+\frac{1}{b}\right)^2}+\sqrt{c^2+\frac{1}{c^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)^2}\)

Xét biểu thức trong căn.

\(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2\)

\(=\left(a+b+c\right)^2+\frac{16}{\left(a+b+c\right)^2}+\frac{65}{\left(a+b+c\right)^2}\)

\(\ge2\sqrt{\left(a+b+c\right)^2.\frac{16}{\left(a+b+c\right)^2}}+\frac{65}{2^2}=\frac{97}{4}\)

\(\Rightarrow VT\ge\frac{\sqrt{97}}{2}.\)

Đẳng thức xảy ra khi 3 biến bằng nhau.

NV
13 tháng 7 2020

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

1 tháng 4 2017

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

1 tháng 4 2017

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

14 tháng 11 2017

ta có \(\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}.\sqrt{ab+2c^2}}=\frac{ab+2c^2}{\sqrt{1+ab-c^2}\sqrt{ab+2c^2}}\)

Áp dụng bất đẳng thức cô si ta có 

\(\sqrt{ab+1-c^2}\sqrt{ab+2c^2}\le\frac{1}{2}\left(ab+1-c^2+ab+2c^2\right)=\frac{1}{2}\left(2ab+1+c^2\right)\) 

=\(\frac{1}{2}\left(2ab+a^2+b^2+2c^2\right)=\frac{1}{2}\left[\left(a+b\right)^2+2c^2\right]\le\frac{1}{2}\left(2a^2+2b^2+2c^2\right)=\left(a^2+b^2+c^2\right)\) =1

=> \(\frac{ab+2c^2}{...}\ge\frac{ab+2c^2}{1}=2c^2+ab\)

tương tự + vào thì e sẽ ra điều phải chứng minh

22 tháng 4 2020

Nhà hàng Tôm hùm kính chào quý khách ĐC : 255 Nguyễn Huệ, Q tân bình , TP HCM