Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+a_3+...+a_{2012}}{a_1+a_2+a_3+...+a_{2012}}=1\)(Vì \(a_1+a_2+a_3+...+a_{2012}\ne0\))
Khi đó \(a_1=a_2=a_3=...=a_{2012}\)
=> \(M=\frac{a_1^{2012}+a_2^{2012}+...+a_{2012}^{2012}}{\left(a_1+a_2+...+a_{2012}\right)^{2012}}=\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{1}{2012^{2011}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2012}}{a_1}=\frac{a_1+a_2+...+a_{2012}}{a_2+a_3+...+a_1}=1\)
\(\Rightarrow a_1=a_2=a_3=...=a_{2012}\)
Khi đó M = \(\frac{2012.a_1^{2012}}{\left(2012.a_1\right)^{2012}}=\frac{2012.a_1^{2012}}{2012^{2012}.a_1^{2012}}=\frac{2012}{2012^{2012}}=\frac{1}{2012^{2011}}\)
a) \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\cdot\cdot\cdot\left(\frac{1}{2012^2}-1\right)\)(có 1006 số hạng nên tích của A là số dương)
\(\Rightarrow A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{2012^2}\right)\)
\(\Rightarrow A=\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\cdot\cdot\cdot\left(\frac{2012^2-1}{2012^2}\right)\)
\(\Rightarrow A=\frac{1\cdot3}{2^2}\cdot\frac{2\cdot4}{3^2}\cdot\cdot\cdot\frac{2011\cdot2013}{2012^2}\)
\(\Rightarrow A=\text{}\frac{2013}{2\cdot2012}=\frac{2013}{4024}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=......\dfrac{a_9}{a_1}=\dfrac{a_1+a_2+....+a_9}{a_2+a_3+.....+a_1}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a_1}{a_2}=1\Rightarrow a_1=a_2\\\dfrac{a_2}{a_3}=1\Rightarrow a_2=a_3\\\dfrac{a_9}{a_1}=1\Rightarrow a_9=a_1\end{matrix}\right.\)
\(\Rightarrow a_1=a_2=....a_9\)
Vậy ......
Chúc bạn học tốt!
Có \(\frac{a}{b}=\frac{c}{d}\) . Có \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}\) ( Tính chất dãy tỉ số bằng nhau ) . Nên :
\(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\left(\frac{a+b}{c+d}\right)^{2012}\left(1\right)\)
Mà \(\left(\frac{a}{b}\right)^{2012}=\left(\frac{c}{d}\right)^{2012}=\frac{a^{2012}}{b^{2012}}=\frac{c^{2012}}{d^{2012}}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(2\right)\).( T/c dãy tỉ số bằng nhau )
Từ \(\left(1\right)\left(2\right)\Rightarrow\left(\frac{a+b}{c+d}\right)^{2012}=\frac{a^{2012}+c^{2012}}{b^{2012}+d^{2012}}\left(đpcm\right)\)
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}\)
\(=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)\(=\frac{\left(a_1+a_2+...+a_9\right)-\left(1+2+...+9\right)}{45}\)\(=\frac{90-45}{45}=1\)
Do dó, suy ra:\(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)
\(\frac{a_2-2}{8}=1\Rightarrow a_2=10\)
\(...\)
\(\frac{a_9-9}{1}=1\Rightarrow a_9=10\)
Vậy \(a_1=a_2=...=a_9=10\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\)
\(\Rightarrow\left(\dfrac{a+b}{c+d}\right)^{2012}=\dfrac{a^{2012}}{c^{2012}}=\dfrac{b^{2012}}{d^{2012}}=\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}\) (đpcm)
Sai đề rồi nhé bạn!