Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Gọi A là tổng các số ngịch đảo của các số đã cho, ta có:
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
A= \(\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{11}\right)+\left(\frac{1}{11}-\frac{1}{14}\right)+\left(\frac{1}{14}-\frac{1}{17}\right)+\left(\frac{1}{17}-\frac{1}{20}\right)\)
=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
=\(\frac{1}{2}-\frac{1}{20}\)
=\(\frac{9}{20}\)
a)
<=> 720 : [ 41 - ( 7x^2 - 5 ) ] = 40
<=> 41 - ( 7x^2 - 5 ) = 720 : 40
<=> 41 - ( 7x^2 - 5 ) = 18
<=> 7x^2 - 5 = 41 - 18
<=> 7x^2 - 5 = 23
<=> 7x^2 = 23 + 5
<=> 7x^2 = 28
<=> x^2 = 28 : 7
<=> x^2 = 4
<=> x^2 = 2^2
<=> x = 2
b) 10: 1/10
40: 1/40
88: 1/88
154: 1/154
238: 1/238
Rồi b tách mẫu số ra như sau:
\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}\)
=> \(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+\frac{1}{11\times14}+\frac{1}{14\times17}\)
Đó rồi tính tiếp nha
a, 41-(7x^2-5)=720:40=18
7x^2-5=41-18=23
7x^2=23+5=28
x^2=28:7=4
x= 2 và -2
b, luôn bằng 0 có tính chất
Tổng nghịch đảo có dạng: \(\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\)\(+\dfrac{1}{90}+\dfrac{1}{110}\) \(=\dfrac{1}{5.6}\)\(+\dfrac{1}{6.7}+...+\dfrac{1}{10.11}\)\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{10}-\dfrac{1}{11}\)\(=\dfrac{1}{5}-\dfrac{1}{11}=\dfrac{6}{55}\)
tổng nghịch đảo có dạng: \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}=\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{10.11}=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{5}-\frac{1}{11}=\frac{6}{55}\)
\(A=\frac{3}{3}.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{3}{20}\)
\(\frac{1}{10}\)+\(\frac{1}{40}\)+\(\frac{1}{88}\)+\(\frac{1}{154}\)+\(\frac{1}{238}\)+\(\frac{1}{340}\)
=\(\frac{1}{2.5}\)+\(\frac{1}{5.8}\)+\(\frac{1}{8.11}\)+\(\frac{1}{11.14}\)+\(\frac{1}{14.17}\)+\(\frac{1}{17.20}\)
=\(\frac{1}{3}\)(\(\frac{3}{2.5}\)+\(\frac{3}{5.8}\)+\(\frac{3}{8.11}\)+\(\frac{3}{11.14}\)+\(\frac{3}{14.17}\)+\(\frac{3}{17.20}\))
=\(\frac{1}{3}\)(\(\frac{1}{2}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{8}\)+\(\frac{1}{8}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{14}\)+\(\frac{1}{14}\)-\(\frac{1}{17}\)+\(\frac{1}{17}\)-\(\frac{1}{20}\))
=\(\frac{1}{3}\)(\(\frac{1}{2}\)-\(\frac{1}{20}\))
=\(\frac{1}{3}\).\(\frac{9}{20}\)
=\(\frac{3}{20}\)
Ta có: S = 1/10 + 1/40 + 1/88 + 1/154 + 1/238 + 1/340
=> S = 1/2.5 + 1/5.8 + 1/8.11 + 1/11.14 +1/14.17 +1/17.20
Nhân 2 vế với 3 và áp dụng công thức tách 1 phân số thành hiệu 2 phân số: x/n.(n + x) = 1/n - 1/(n + x)
=> 3.S = 3.(1/2.5 + 1/5.8 + 1/8.11 +1/11.14 +1/14.17 +1/17.20)
=> 3.S = 3/2.5 + 3/5.8 + 3/8.11 + 3/11.14 +3/14.17 +3/17.20
=> 3.S = 1/2 - 1/ 5 + 1/5 - 1/8 + 1/8 - 1/11 + 1/11 - 1/14 + 1/14 - 1/17 + 1/17 -1/20
=> 3.S = 1/2 - 1/20
=> 3.S = 9/20
=> S = 3/20
3/20 nha bn