Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
<=> 720 : [ 41 - ( 7x^2 - 5 ) ] = 40
<=> 41 - ( 7x^2 - 5 ) = 720 : 40
<=> 41 - ( 7x^2 - 5 ) = 18
<=> 7x^2 - 5 = 41 - 18
<=> 7x^2 - 5 = 23
<=> 7x^2 = 23 + 5
<=> 7x^2 = 28
<=> x^2 = 28 : 7
<=> x^2 = 4
<=> x^2 = 2^2
<=> x = 2
b) 10: 1/10
40: 1/40
88: 1/88
154: 1/154
238: 1/238
Rồi b tách mẫu số ra như sau:
\(\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}\)
=> \(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+\frac{1}{11\times14}+\frac{1}{14\times17}\)
Đó rồi tính tiếp nha
a, 41-(7x^2-5)=720:40=18
7x^2-5=41-18=23
7x^2=23+5=28
x^2=28:7=4
x= 2 và -2
b, luôn bằng 0 có tính chất
1) Gọi A là tổng các số ngịch đảo của các số đã cho, ta có:
\(A=\frac{1}{10}+\frac{1}{40}+\frac{1}{88}+\frac{1}{154}+\frac{1}{238}+\frac{1}{340}\)
A= \(\left(\frac{1}{2}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{11}\right)+\left(\frac{1}{11}-\frac{1}{14}\right)+\left(\frac{1}{14}-\frac{1}{17}\right)+\left(\frac{1}{17}-\frac{1}{20}\right)\)
=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)
=\(\frac{1}{2}-\frac{1}{20}\)
=\(\frac{9}{20}\)
bài 1
a,\((\)\(\dfrac{-4}{21}\)\()\)x =\(\dfrac{28}{3}\)\(\times\)\(\dfrac{3}{28}\)
\(\Leftrightarrow\)\(\dfrac{-4}{21}\) x =1
\(\Rightarrow\)x = \(\dfrac{-21}{4}\)
b, \(\dfrac{17}{33}\)x = \(\dfrac{1}{56}\)\(\times\)56
\(\Leftrightarrow\)\(\dfrac{17}{33}\)x = 1
\(\Rightarrow\)x = \(\dfrac{33}{17}\)
bài 2 :
a, A=\(\dfrac{25}{32}\)
số nghịch đảo của A là \(\dfrac{32}{25}\)
B=\(\dfrac{3}{7}\)
số nghịch đảo của B là \(\dfrac{7}{3}\)
b, gọi tổng hai số nghịch đảo 2 số đó là Q
Q= \(\dfrac{32}{25}\) +\(\dfrac{7}{3}\)=\(\dfrac{271}{75}\)
\(A=\frac{3}{3}.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+\frac{1}{14.17}+\frac{1}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}\right)\)
\(A=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{20}\right)=\frac{3}{20}\)