Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các số là ab ac ba bc ca cb
Có A=ab+ac+ba+bc+ca+cb=22(a+b+c)
a;b;c là 3 số khác nhau và khác 0 nên tổng a+b+c không thể bé hơn tổng 3 số 1;2;3
Ta có
\(a+b+c\ge1+2+3=6\)
\(A=22\left(a+b+c\right)\ge22.6=132\)(22.6 là 22 nhân với 6)
Vậy tổng A không thể nhỏ hơn 132
Vì mỗi số đều chia hết cho 5.
Suy ra: Tất cả các số này đều có chữ số tận cùng là: 5
Vì là số có 5 chữ số khác nhau nên ta có: 1 cách chọn chữ số hàng đơn vị (chữ số 5)
5 cách chọn chữ số hàng chục nghìn (loại chữ số 5)
4 cách chọn chữ số hàng nghìn (loại chữ số 5 và chữ số hàng chục nghìn)
3 cách chọn chữ số hàng trăm (loại chữ số 5, chữ số hàng chục nghìn và chữ số hàng nghìn)
2 cách chọn chữ số hàng chục (loại chữ số 5, chữ số hàng chục nghìn, chữ số hàng nghìn và chữ số hàng trăm)
Theo quy tắc nhân, ta có:
Số số có 5 chữ số khác nhau mà mỗi số đều chia hết cho 5, lập được từ các chữ số trên là:
1 x 5 x 4 x 3 x 2 = 120 (số)
Suy ra: Mỗi chữ số 1, 2, 3, 7, 9 xuất hiện số lần là: 120 : 5 = 24 (lần)
Riêng chữ số 5 xuất hiện 120 lần
Suy ra: Tổng là: (1 + 2 + 3 + 7 + 9) x 24 x 10000 + (1 + 2 + 3 + 7 + 9) x 24 x 1000 + (1 + 2 + 3 + 7 + 9) x 24 x 100 + (1 + 2 + 3 + 7 + 9) x 24 x 10 + 5 x 120
= 22 x 24 x (10000 + 1000 + 100 + 10) + 5 x 120
= 22 x 24 x 11110 + 5 x 120
= 5866080 + 600
= 5866680
a: \(\overline{abc}\)
a có 3 cáhc
b có 4 cáhc
c có 4 cách
=>Có 3*4*4=48 cách
b: \(\overline{abcd}\)
a có 3 cách
b có 3 cách
c có 2 cách
d có 1 cách
=>Có 3*3*2=18 cách
c: \(\overline{abc}\)
c có 1 cách
a có 3 cách
b có 4 cách
=>Có 1*3*4=12 cách
d: \(\overline{abcd}\)
TH1: d=0
=>Có 3*4*4=48 cách
TH2: d<>0
d có 2 cách
a có 3 cách
b có 4 cách
c có 4 cách
=>Có 4*4*3*2=16*6=96 cách
=>Có 144 cách