K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2015

C=1+3+32+33+...+311=(1+3+32+33)+...+(38+39+310+311)=40(1+...+6561)

Do có thừa số là 40 nên C chia hết cho 40

*Chú ý:Do 38+39+310+311 tính máy tính rồi chia cho 40 được nên tui mới viết 6561 còn nếu số lớn hơn nữa thì cứ viết 1+...+đề bài cho gì sau đó chia cho số mà phải chứng minh chia hết

VD: bla..bla+340+341+342+343(...+...)+....+(340+341+342+343)=m.[1+....+(340+341+342+343):40]

24 tháng 7 2023

\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)

Ý a phải chia hết cho 13 chứ em?

b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)

=40(1+...+3^8) chia hết cho 40

a: C ko chia hết cho 15 nha bạn

23 tháng 10 2023

A=1+3+3^2+3^3+...+3^98+3^99+3^100

A=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)

A=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)

A=13x3^3x13+...+3^98x13

=> 13x(1+3+3^3+...+3^98)chia hết cho 13

Vậy A chia hết cho 13

23 tháng 10 2023

câu b đâu bạn ?

 

17 tháng 12 2021

a: \(A=\left(1+3\right)+...+3^{10}\left(1+3\right)\)

\(=4\left(1+...+3^{10}\right)⋮4\)

21 tháng 2 2017

1 tháng 2 2017

a,  C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11

=  1 + 3 1 + 3 2  +  3 3 + 3 4 + 3 5  +...+  3 9 + 3 10 + 3 11

=  1 + 3 1 + 3 2 +  3 3 . 1 + 3 1 + 3 2 + ... +  3 9 1 + 3 1 + 3 2

=  1 + 3 1 + 3 2 . 1 + 3 3 + . . . + 3 9

= 13. 1 + 3 3 + . . . + 3 9 ⋮ 13

b,  C = 1 + 3 1 + 3 2 + 3 3 + . . . + 3 11

=  1 + 3 1 + 3 2 + 3 3 +  3 4 + 3 5 + 3 6 + 3 7 +  3 8 + 3 9 + 3 10 + 3 11

=  1 + 3 1 + 3 2 + 3 3 +  3 4 1 + 3 1 + 3 2 + 3 3 +  3 8 1 + 3 1 + 3 2 + 3 3

=  1 + 3 1 + 3 2 + 3 3 . 1 + 3 4 + 3 8

= 40. 1 + 3 4 + 3 8 ⋮ 40

13 tháng 5 2018

22 tháng 10 2023

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

17 tháng 10 2021

\(C=1+3+3^2+...+3^{11}\)

\(=\left(1+3+3^2\right)+...+3^9\left(1+3+3^2\right)\)

\(=13\cdot\left(1+...+3^9\right)⋮13\)

20 tháng 2 2018

Đáp án cần chọn là: C