K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2021

a/ Tạo với 2 trục tọa độ một tam giác vuông cân, tức là hệ số góc của tiếp tuyến bằng \(\pm1\). Hay \(f'\left(x\right)=\pm1\)

\(f'\left(x\right)=\dfrac{x-1-x}{\left(x-1\right)^2}=-\dfrac{1}{\left(x-1\right)^2}\)

\(\left(x-1\right)^2>0\forall x\ne1\Rightarrow f'\left(x\right)=-1\)

\(\Leftrightarrow x-1=\pm1\Leftrightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=2\\y=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=-1\left(x-2\right)+2=4-x\\y=-1\left(x-0\right)+0=-x\end{matrix}\right.\)

b/ \(y=k\left(x-1\right)+3\)

\(\left\{{}\begin{matrix}k\left(x-1\right)+3=\dfrac{x}{x-1}\left(1\right)\\k=-\dfrac{1}{\left(x-1\right)^2}\left(2\right)\end{matrix}\right.\)

The (2) vo (1) \(\Rightarrow-\dfrac{x-1}{\left(x-1\right)^2}+3=\dfrac{x}{x-1}\Leftrightarrow\dfrac{-1}{x-1}+3=\dfrac{x}{x-1}\)

\(\Leftrightarrow\dfrac{x+1}{x-1}=3\Leftrightarrow x+1=3x-3\Leftrightarrow x=2\)

\(\Rightarrow k=-\dfrac{1}{\left(2-1\right)^2}=-1;y=2\)

\(\Rightarrow y=-1\left(x-2\right)+2=4-x\)

P/s: Check lại dùm toi nha

NV
24 tháng 12 2020

\(y'=\dfrac{1}{2}x^3-\dfrac{7}{2}x\)

Chỉ cần để ý 1 lý thuyết:

Đường thẳng đi qua 2 điểm \(A\left(x_1;y_1\right)\) và \(B\left(x_2;y_2\right)\) sẽ có hệ số góc \(k=\dfrac{y_1-y_2}{x_1-x_2}\)

Do đó ta có hệ số góc của đường thẳng MN là \(k=3\)

\(\Rightarrow\dfrac{1}{2}x^3-\dfrac{7}{2}x=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-1\\x=3\end{matrix}\right.\) (sao lắm nghiệm vậy trời)

Biết hoành độ 3 tiếp điểm, bạn viết 3 pt tiếp tuyến rồi xét pt hoành độ với (C) coi cái nào có 4 nghiệm (trong đó có 1 nghiệm kép) thì nhận

25 tháng 12 2020

undefined

AH
Akai Haruma
Giáo viên
15 tháng 4 2021

Lời giải:
Để PTTT tại $x=x_0$ song song với trục hoành thì $f'(x_0)=0$ và $f(x_0)\neq 0$

$f'(x)=4x^3-4x=0\Leftrightarrow x=0;1;-1$

Thử các giá trị $x$ này vô $f(x_0)$ xem có khác $0$ hay không ta thu được $x=\pm 1$

Tức là có 2 tiếp tuyến của $(C)$ song song với trục hoành.

a: \(f'\left(x\right)=\dfrac{\left(2x+2\right)'\cdot\left(x-1\right)-\left(2x+2\right)\cdot\left(x-1\right)'}{\left(x-1\right)^2}\)

\(=\dfrac{2\left(x-1\right)-2x-2}{\left(x-1\right)^2}=\dfrac{-4}{\left(x-1\right)^2}\)

y-y0=f'(x0)*(x-x0)

=>y=y0+f'(x0)*(x-x0)=f(x0)+f'(x0)(x-x0)

(d)//-4x+8 nên f(x0)=-4

=>2x+2=-4x+4

=>6x=2

=>x=1/3

f'(1/3)=-4/(1/3-1)^2=-9

y=-4+(-9)(x-1/3)=-4-9x+3=-9x-1

b: (d) vuông góc y=4x+3

=>(d): y=-1/4x+b

(d): y=f(x0)+f'(x0)*(x-x0)

=>f(x0)=-1/4

=>2x+2=-1/4(x-1)=-1/4x+1/4

=>9/4x=-7/4

=>x=-7/9

f'(-7/9)=-4/(-7/9-1)^2=-81/64

y=f(-7/9)+f'(-7/9)*(x+7/9)

=-1/4-81/64(x+7/9)

=-81/64x-79/64

 

NV
2 tháng 4 2021

\(y'=\dfrac{-3}{\left(x-1\right)^2}\)

Gọi tiếp điểm có hoành độ \(x_0\)

Phương trình tiếp tuyến: \(y=\dfrac{-3}{\left(x_0-1\right)^2}\left(x-x_0\right)+\dfrac{2x_0+1}{x_0-1}\) (1)

a.

Tọa độ A và B có dạng: \(A\left(\dfrac{2x_0^2+2x_0-1}{3};0\right)\) ; \(B\left(0;\dfrac{2x_0^2+2x_0-1}{\left(x_0-1\right)^2}\right)\)

\(\Rightarrow OA=\left|\dfrac{2x_0^2+2x_0-1}{3}\right|;OB=\dfrac{\left|2x_0^2+2x_0-1\right|}{\left(x_0-1\right)^2}\)

\(S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{1}{6}\Rightarrow OA.OB=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{\left(2x_0^2+2x_0-1\right)^2}{3\left(x_0-1\right)^2}=\dfrac{1}{3}\Rightarrow\left(2x_0^2+2x_0-1\right)^2=\left(x_0-1\right)^2\)

\(\Leftrightarrow\left(2x_0^2+3x_0-2\right)\left(2x_0^2+x_0\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x_0=0\\x_0=-\dfrac{1}{2}\\x_0=-2\\x_0=\dfrac{1}{2}\end{matrix}\right.\) 

Có 4 tiếp tuyến thỏa mãn:... (thế lần lượt các giá trị \(x_0\) vào (1) là được)

2 tháng 4 2021

em cam ơn a

NV
2 tháng 4 2021

\(y'=3x^2+6x-6\)

Tiếp tuyến vuông góc đường thẳng đã cho nên có hệ số góc thỏa mãn:

\(k.\left(-\dfrac{1}{18}\right)=-1\Rightarrow k=18\)

\(\Rightarrow3x^2+6x-6=18\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=9\\x=-4\Rightarrow y=9\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=18\left(x-2\right)+9\\y=18\left(x+4\right)+9\end{matrix}\right.\)