Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cứ mỗi lần anh Lâm onl là ông đăng bài hỏi với tốc độ bàn thờ :v
a/ Hoành độ giao điểm của (C) với trục tung là \(x_0=0\)
\(y'=x^2-2x+2\)
\(\Rightarrow pttt:y-y_0=y'\left(x-x_0\right)\Leftrightarrow y=1+2x\)
b/ \(y'=x^2-2x+2\)
Goi \(M\left(x_0;y_0\right)\) la tiep diem \(\Rightarrow k=y'=x_0^2-2x_0+2\)
Vi tiep tuyen vuong goc voi \(y=-\dfrac{1}{5}x+2\)
\(\Rightarrow k.k'=-1\Leftrightarrow\left(x_0^2-2x_0+2\right).\left(-\dfrac{1}{5}\right)=-1\Leftrightarrow x_0^2-2x_0+2=5\)
\(\Leftrightarrow\left[{}\begin{matrix}x_0=3\\x_0=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y_0=\dfrac{3^3}{3}-3^2+2.3+1=7\\y_0=-\dfrac{1}{3}-1-2+1=-\dfrac{7}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=7+5\left(x-3\right)\\y=-\dfrac{7}{3}+5\left(x+1\right)\end{matrix}\right.\)
P/s: Check lại số hộ mình ạ!
1) \(y'=-2x^3-2x\)
Với x=0, ta có: \(y'\left(0\right)=0\)
⇒ Phương trình tiếp tuyến tại điểm M(0;2) là: y=0(x-0)+2=2
2) \(y'=-\dfrac{1}{\left(x+1\right)^2}\)
Với x=2, \(y'\left(2\right)=-\dfrac{1}{\left(2+1\right)^2}=-\dfrac{1}{9}\)
⇒ Phương trình tiếp tuyến tại điểm (2;\(\dfrac{4}{3}\)) là: \(y=-\dfrac{1}{9}\left(x-2\right)+\dfrac{4}{3}=-\dfrac{1}{9}x+\dfrac{14}{9}\)
a: \(y'=\dfrac{\left(x-4\right)'\left(2x+1\right)-\left(x-4\right)\left(2x+1\right)'}{\left(2x+1\right)^2}\)
\(=\dfrac{2x+1-2\left(x-4\right)}{\left(2x+1\right)^2}=\dfrac{9}{\left(2x+1\right)^2}\)
Khi x=-1 thì \(y=\dfrac{-1-4}{-2+1}=\dfrac{-5}{-1}=5\)
Khi x=-1 thì \(y'=\dfrac{9}{\left(-2\cdot1+1\right)^2}=\dfrac{9}{\left(-2+1\right)^2}=9\)
Phương trình tiếp tuyến tại điểm có hoành độ x=-1 là:
y-5=9(x+1)
=>y-5=9x+9
=>y=9x+14
b: \(y'=\dfrac{2'\left(x-3\right)-2\left(x-3\right)'}{\left(x-3\right)^2}=\dfrac{-2}{\left(x-3\right)^2}\)
Khi x=2 thì \(y=\dfrac{2}{2-3}=-1;y'=-\dfrac{-2}{\left(2-3\right)^2}=-2\)
Phương trình tiếp tuyến tại điểm có hoành độ bằng 2 là:
y-(-1)=-2(x-2)
=>y+1=-2x+4
=>y=-2x+3
Lời giải:
a. PTTT của ĐTHS tại điểm $(x_0,y_0)$ là:
$y=y'(x_0)(x-x_0)+y_0$
$=(-x_0^2-4x_0-3)(x-x_0)+y_0$
Hệ số góc max $\Leftrightarrow -x_0^2-4x_0-3$ max
Mà:
$-x_0^2-4x_0-3=1-(x_0+2)^2\leq 1$ nên $-x_0^2-4x_0-3$ max bằng $1$ khi $x_0=-2$
Vậy PTTT cần tìm là:
$y=y'(-2)(x+2)+y(-2)=1(x+2)+\frac{5}{3}=x+\frac{11}{3}$
b.
Hệ số góc nhỏ nhất đâu đồng nghĩa với $y''(x_0)=0$ đâu bạn?)
Để pttt tại $x=x_0$ có hệ số góc min thì nghĩa là $f'(x_0)=-x_0^2-4x_0-3$ min
Mà $f'(x_0)$ không tồn tại min trên $\mathbb{R}$ nên không có pttt thỏa mãn.
a.
\(y'=\dfrac{\left(sinx+cosx\right)'}{2\sqrt{sinx+cosx}}=\dfrac{cosx-sinx}{2\sqrt{sinx+cosx}}\)
b.
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
Tiếp tuyến vuông góc với \(y=\dfrac{1}{4}x+5\) nên có hệ số góc thỏa mãn \(k.\left(\dfrac{1}{4}\right)=-1\Rightarrow k=-4\)
\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left(x-1\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-3\\x=2\Rightarrow y=5\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4x-3\\y=-4\left(x-2\right)+5\end{matrix}\right.\)
Ta có : \(y=\dfrac{x-1}{x+1}\Rightarrow y'=\dfrac{\left(x+1\right)-\left(x-1\right)}{\left(x+1\right)^2}=\dfrac{2}{\left(x+1\right)^2}\)
Giả sử d' là tiếp tuyến của đths đã cho . Do d' // d : y = \(\dfrac{x-2}{2}\)
\(\Rightarrow d'\) có HSG = 1/2 \(\Rightarrow\dfrac{2}{\left(x+1\right)^2}=\dfrac{1}{2}\Leftrightarrow4=\left(x+1\right)^2\) \(\Leftrightarrow\left[{}\begin{matrix}x+1=2\\x+1=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Với x = 1 . PTTT d' : \(y=\dfrac{1}{2}\left(x-1\right)+0=\dfrac{1}{2}x-\dfrac{1}{2}\)
Với x = -3 . PTTT d' : \(y=\dfrac{1}{2}\left(x+3\right)+2=\dfrac{1}{2}x+\dfrac{7}{2}\)