K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2021

Cứ mỗi lần anh Lâm onl là ông đăng bài hỏi với tốc độ bàn thờ :v

a/ Hoành độ giao điểm của (C) với trục tung là \(x_0=0\)

\(y'=x^2-2x+2\)

\(\Rightarrow pttt:y-y_0=y'\left(x-x_0\right)\Leftrightarrow y=1+2x\)

b/ \(y'=x^2-2x+2\)

Goi \(M\left(x_0;y_0\right)\) la tiep diem \(\Rightarrow k=y'=x_0^2-2x_0+2\)

Vi tiep tuyen vuong goc voi \(y=-\dfrac{1}{5}x+2\)

\(\Rightarrow k.k'=-1\Leftrightarrow\left(x_0^2-2x_0+2\right).\left(-\dfrac{1}{5}\right)=-1\Leftrightarrow x_0^2-2x_0+2=5\)

\(\Leftrightarrow\left[{}\begin{matrix}x_0=3\\x_0=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y_0=\dfrac{3^3}{3}-3^2+2.3+1=7\\y_0=-\dfrac{1}{3}-1-2+1=-\dfrac{7}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=7+5\left(x-3\right)\\y=-\dfrac{7}{3}+5\left(x+1\right)\end{matrix}\right.\)

P/s: Check lại số hộ mình ạ!

 

HQ
Hà Quang Minh
Giáo viên
3 tháng 8 2023

1) \(y'=-2x^3-2x\)

Với x=0, ta có: \(y'\left(0\right)=0\)

⇒ Phương trình tiếp tuyến tại điểm M(0;2) là: y=0(x-0)+2=2

 

2) \(y'=-\dfrac{1}{\left(x+1\right)^2}\)

Với x=2, \(y'\left(2\right)=-\dfrac{1}{\left(2+1\right)^2}=-\dfrac{1}{9}\)

⇒ Phương trình tiếp tuyến tại điểm (2;\(\dfrac{4}{3}\)) là: \(y=-\dfrac{1}{9}\left(x-2\right)+\dfrac{4}{3}=-\dfrac{1}{9}x+\dfrac{14}{9}\)

a: \(y'=\dfrac{\left(x-4\right)'\left(2x+1\right)-\left(x-4\right)\left(2x+1\right)'}{\left(2x+1\right)^2}\)

\(=\dfrac{2x+1-2\left(x-4\right)}{\left(2x+1\right)^2}=\dfrac{9}{\left(2x+1\right)^2}\)

Khi x=-1 thì \(y=\dfrac{-1-4}{-2+1}=\dfrac{-5}{-1}=5\)

Khi x=-1 thì \(y'=\dfrac{9}{\left(-2\cdot1+1\right)^2}=\dfrac{9}{\left(-2+1\right)^2}=9\)

Phương trình tiếp tuyến tại điểm có hoành độ x=-1 là:

y-5=9(x+1)

=>y-5=9x+9

=>y=9x+14

b: \(y'=\dfrac{2'\left(x-3\right)-2\left(x-3\right)'}{\left(x-3\right)^2}=\dfrac{-2}{\left(x-3\right)^2}\)

Khi x=2 thì \(y=\dfrac{2}{2-3}=-1;y'=-\dfrac{-2}{\left(2-3\right)^2}=-2\)

Phương trình tiếp tuyến tại điểm có hoành độ bằng 2 là:

y-(-1)=-2(x-2)

=>y+1=-2x+4

=>y=-2x+3

Bài 1: Viết phương trình đồ thị hàm sốa) \(y=x^3-3x^2+2 \) tại điểm (-1;-2)b) \(y=\dfrac{x^2+4x+5}{x+2}\) tại điểm có hoành độ bằng 0Bài 2: Viết phương trình tiếp tuyến với:a) Đường cong (C): \(y=x^3+x-3\) tại điểm có hoành độ bằng -1b) Đường cong (C): \(y=x^3-3x^2\) tại điểm có tung độ bằng -4c) Đường cong (C): \(y=\dfrac{x-3}{2x+1}\) tại điểm có hoành độ bằng -1Bài 3: Viết phương trình tiếp tuyến với:a)...
Đọc tiếp

Bài 1: Viết phương trình đồ thị hàm số

a) \(y=x^3-3x^2+2 \) tại điểm (-1;-2)

b) \(y=\dfrac{x^2+4x+5}{x+2}\) tại điểm có hoành độ bằng 0

Bài 2: Viết phương trình tiếp tuyến với:

a) Đường cong (C): \(y=x^3+x-3\) tại điểm có hoành độ bằng -1

b) Đường cong (C): \(y=x^3-3x^2\) tại điểm có tung độ bằng -4

c) Đường cong (C): \(y=\dfrac{x-3}{2x+1}\) tại điểm có hoành độ bằng -1

Bài 3: Viết phương trình tiếp tuyến với:

a) Đường cong (C): \(y=\dfrac{1}{3}3x^3-2x^2+3x+1\) biết tiếp tuyến song song đường thẳng \(y=\dfrac{-3}{4}x\)

b) Đường cong (C): \(y=\dfrac{x^2+3x+1}{-x-2}\) biết tiếp tuyến song song với đường thẳng 2x+y-5=0

Bài 4: Cho đường cong (C): \(y=\dfrac{x^2-2x+2}{x-1}\). Viết phương trình tiếp tuyến của (C) biết:

a) Tại điểm có hoành độ bằng 6

b) Song song với đường thẳng \(y=-3x+29\)

c) Vuông góc với đường thẳng \(y=\dfrac{1}{3}x+2\)

Bài 5: Cho hàm số \(y=\dfrac{3x-2}{x-1}\) (C). Viết phương trình tiếp tuyến của đồ thị hàm số (C) biết:

a) Tiếp tuyến đi qua A(2;0)

b) Tiếp tuyến tạo với trục hoành 1 góc 45°

Mình làm xong hết rồi nhưng mà không biết đúng hay không. Nhờ mọi người giải giúp mình để mình thử đối chiếu đáp án được không ạ?

 

 

0
AH
Akai Haruma
Giáo viên
30 tháng 3 2022

Lời giải:
a. PTTT của ĐTHS tại điểm $(x_0,y_0)$ là:

$y=y'(x_0)(x-x_0)+y_0$
$=(-x_0^2-4x_0-3)(x-x_0)+y_0$
Hệ số góc max $\Leftrightarrow -x_0^2-4x_0-3$ max 

Mà:
$-x_0^2-4x_0-3=1-(x_0+2)^2\leq 1$ nên $-x_0^2-4x_0-3$ max bằng $1$ khi $x_0=-2$
Vậy PTTT cần tìm là:
$y=y'(-2)(x+2)+y(-2)=1(x+2)+\frac{5}{3}=x+\frac{11}{3}$

b.

Hệ số góc nhỏ nhất đâu đồng nghĩa với $y''(x_0)=0$ đâu bạn?)

Để pttt tại $x=x_0$ có hệ số góc min thì nghĩa là $f'(x_0)=-x_0^2-4x_0-3$ min 

Mà $f'(x_0)$ không tồn tại min trên $\mathbb{R}$ nên không có pttt thỏa mãn.

NV
3 tháng 5 2021

a.

\(y'=\dfrac{\left(sinx+cosx\right)'}{2\sqrt{sinx+cosx}}=\dfrac{cosx-sinx}{2\sqrt{sinx+cosx}}\)

b.

\(y'=\dfrac{-4}{\left(x-1\right)^2}\)

Tiếp tuyến vuông góc với \(y=\dfrac{1}{4}x+5\) nên có hệ số góc thỏa mãn \(k.\left(\dfrac{1}{4}\right)=-1\Rightarrow k=-4\)

\(\Rightarrow\dfrac{-4}{\left(x-1\right)^2}=-4\Rightarrow\left(x-1\right)^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=-3\\x=2\Rightarrow y=5\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=-4x-3\\y=-4\left(x-2\right)+5\end{matrix}\right.\)

y'=(x-1)'(x+1)-(x-1)(x+1)'/(x+1)^2=(x+1-x+1)/(x+1)^2=2/(x+1)^2

(d1)//(d)

=>(d1): y=1/2x+b

=>y'=1/2

=>(x+1)^2=4

=>x=1 hoặc x=-3

Khi x=1 thì f(1)=0

y-f(1)=f'(1)(x-1)

=>y-0=1/2(x-1)=1/2x-1/2

Khi x=-3 thì f(-3)=(-4)/(-2)=2

y-f(-3)=f'(-3)(x+3)

=>y-2=1/2(x+3)

=>y=1/2x+3/2+2=1/2x+7/2