Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:b)Ta có:
D=(51*52*53*...*100):2^50.
=(51*53*55*...*99)*(52*54*56*...*100):2^50.
Khử 51*53*55*...*99 thì cần so sánh 1*3*5*...*41 với (52*54*56*...*100):2^50.
Lại có:
52*54*56*...*100:2^50=(52:2)*(54:2)*...*(100:2):(2^25) (vì 52;54;56;...;100 có 25 thừa số.
=26*27*28*...*50:2^25.
=(27*29*31*...*49)*(26*28*30*...*50):2^25
Khử với 1*3*5*...*49 thì cần so sánh 1*3*5*...*25 với (26*28*30*...*50):2^25.
Lại có:
26*28*30*...*50:2^25=(26:2)*(28:2)*(30:2)*...*(50:2):2^12(vì 26;28;30;...;50 có 13 thừa số).
=13*14*15*...*25:2^12.
=(13*15*17*19*21*23*25)*(14*16*18*20*22*24):2^12.
Khử với 1*3*5*...*25 thì cần so sánh 1*3*5*7*9*11 với (14*16*18*20*22*24):2^12.
Giờ số nhỏ rồi bấm máy tính so sánh là được.\
=>C=D.
Vậy C=D.
mấy câu kia dễ rồi tự l;àm nha mk nhắc câu khó thôi.
tk cho mk nha các bn.
-chúc ai tk mk học giỏi-
1/
a, x + (x+1) + (x+2) +...+ (x+100) = 2029099
(x+x+x+...+x) + (1+2+...+100) = 2029099
2011x + 2021055 = 2029099
2011x = 2029099 - 2021055
2011x = 8044
x = 8044 : 2011
x = 4
b, 2+4+6+....+2x = 210
=> 2(1+2+3+...+x) = 210
=> \(\frac{2x\left(x+1\right)}{2}=210\)
=> x(x+1) = 14.15
=> x = 14
2/
a, Vì B < 1
\(\Rightarrow B< \frac{2009^{2009}+1+2008}{2009^{2010}+1+2008}=\frac{2009^{2009}+2009}{2009^{2010}+2009}=\frac{2009\left(2009^{2008}+1\right)}{2009\left(2009^{2009}+1\right)}=\frac{2009^{2008}+1}{2009^{2009}+1}\)= A
Vậy A > B
b, Ta có:
\(D=\frac{51}{2}.\frac{52}{2}.\frac{53}{2}.....\frac{100}{2}=\frac{51.52.53....100}{2^{50}}\)
\(=\frac{\left(51.52.53....100\right)\left(1.2.3.4....50\right)}{2^{50}.\left(1.2.3.4....50\right)}\)
\(=\frac{1.2.3.4.5.6.....100}{\left(2.1\right)\left(2.2\right).\left(2.3\right).....\left(2.50\right)}\)
\(=\frac{1.2.3.4.5.6......100}{2.4.6........100}=\frac{\left(1.3.5....99\right)\left(2.4.6....100\right)}{2.4.6....100}\)
\(=1.3.5....99=C\)
Vậy C = D
mik làm câu A thôi nha
ta có :
1 - 2009/2010 = 1/2010
1 - 2010/2011 = 1/2011
Phần bù nào bé thì phân số đó lớn .
Vì 1/2010 > 1/2011
Nên 2009/2010 > 2010/2011
Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 )
Để so sánh hai phân số, ta so sánh các hiệu.
\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)
Ta có :
\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)
\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)
Ta thấy :
\(\frac{1}{2010}>\frac{1}{2011}\)
Hay :
\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)
Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)
Bạn giải cũng được đấy alibaba nguyễn, nhưng theo mình thì làm cách này dễ hiểu hơn!
Ta có: \(C=\frac{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}\)
Đặt \(A=\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}\)
\(A=\frac{2010}{1}+1+\frac{2009}{1}+1+\frac{2008}{1}+1+...+\frac{1}{2010}+1-2010\)
\(=\frac{2011}{1}+\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}-\frac{2011.2010}{2011}\)
\(=2011\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\right)\)
Đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}-1\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2010}-\frac{2010}{2011}\)
Ta có: \(C=\frac{A}{B}=2011\)(lấy A-B)
Ta có :
\(2010A=\dfrac{2010^{2012}+2010}{2010^{2012}+1}=\dfrac{2010^{2012}+1+2009}{2010^{2012}+1}=1+\dfrac{2009}{2010^{2012}+1}\)
\(2010B=\dfrac{2010^{2011}+2010}{2010^{2011}+1}=\dfrac{2010^{2011}+1+2009}{2010^{2011}+1}=1+\dfrac{2009}{2010^{2011}+1}\)
Vì \(1+\dfrac{2009}{2010^{2012}+1}< 1+\dfrac{2009}{2010^{2011}+1}\Rightarrow A< B\)
~ Học tốt ~
\(C=\frac{4^1-1}{4^1}+\frac{4^2-1}{4^2}+...+\frac{4^{2009}-1}{4^{2009}}+\frac{4^{2010}-1}{4^{2010}}\)
\(C=\frac{4^1}{4^1}-\frac{1}{4^1}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{4^{2009}}{4^{2009}}-\frac{1}{4^{2009}}+\frac{4^{2010}}{4^{2010}}-\frac{1}{4^{2010}}\)
\(C=\left(1+1+...+1\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)(tổng có 2010 số 1)
\(C=2010-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)
Xét tổng \(A=\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\)
=> \(4A=1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\)
=> \(4A-A=\left(1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\right)-\)\(\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)
=> \(3A=1-\frac{1}{4^{2010}}2010-1>2009\)
\(C=\frac{4^1-1}{4^1}+\frac{4^2-1}{4^2}+...+\frac{4^{2009}-1}{4^{2009}}+\frac{4^{2010}-1}{4^{2010}}\)
\(C=\frac{4^1}{4^1}-\frac{1}{4^1}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{4^{2009}}{4^{2009}}-\frac{1}{4^{2009}}+\frac{4^{2010}}{4^{2010}}-\frac{1}{4^{2010}}\)
\(C=\left(1+1+...+1\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)(có 2010 số 1)
\(C=2010-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)
Xét : \(A=\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\)
\(4A=1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\)
\(4A-A=\left(1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)
\(3A=1-\frac{1}{4^{2010}}< 1\)
\(A< \frac{1}{3}\)
\(C=2010-A>2010-\frac{1}{3}>2010-1>2009\)