K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2016
Em mới học lớp 7
14 tháng 6 2016

VTVP=a24+b2+c2abbc+2bc+a212=(a2bc)2+a236bc12>0 đpcm

Cách khác:

Từ giả thiết suy ra a>0 và bc>0. Bất đẳng thức cần chứng minh tương đương vớia23+(b+c)23bca(b+c)013+(b+ca)2b+ca3a30Vì a3>36 nên13+(b+ca)2b+ca3a3>(b+ca)2b+ca+14=(b+ca12)2>0
16 tháng 2 2018

Ez z còn

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

\(\Leftrightarrow\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)=0\)

\(\Leftrightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)

Tà thấy \(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2};\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2};\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}>0\forall a;b;c\ne0\)

\(\Rightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right);y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right);z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ge0\forall a;b;c\ne0\)

\(\Rightarrow x^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=0\)

\(\Rightarrow x^{2011}+y^{2011}+z^{2011}=0\)

4 tháng 4 2016

Ta có:

\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

Nhân cả hai vế của đẳng thức trên với  \(a^2+b^2+c^2\ne0\)  (do  \(a,b,c\ne0\)), ta được:

\(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)  \(\left(1\right)\)

Khi đó, ta khai triển vế phải của \(\left(1\right)\)  thì  \(\left(1\right)\) trở thành:

\(VP=x^2+\frac{a^2y^2}{b^2}+\frac{a^2z^2}{c^2}+\frac{b^2x^2}{a^2}+y^2+\frac{b^2z^2}{c^2}+\frac{c^2x^2}{a^2}+\frac{c^2y^2}{b^2}+z^2\)

So sánh vế trái của đẳng thức \(\left(1\right)\), ta dễ dàng nhận thấy cả hai vế có cùng đa thức \(x^2+y^2+z^2\) nên ta có thể viết lại  \(\left(1\right)\)  như sau:

\(\frac{a^2y^2}{b^2}+\frac{a^2z^2}{c^2}+\frac{b^2x^2}{a^2}+\frac{b^2z^2}{c^2}+\frac{c^2x^2}{a^2}+\frac{c^2y^2}{b^2}=0\)

\(\Leftrightarrow\)  \(\left(\frac{b^2x^2}{a^2}+\frac{c^2x^2}{a^2}\right)+\left(\frac{c^2y^2}{b^2}+\frac{a^2y^2}{b^2}\right)+\left(\frac{a^2z^2}{c^2}+\frac{b^2z^2}{c^2}\right)=0\)

\(\Leftrightarrow\)   \(\frac{x^2}{a^2}\left(b^2+c^2\right)+\frac{y^2}{b^2}\left(c^2+a^2\right)+\frac{z^2}{c^2}\left(a^2+b^2\right)=0\)  \(\left(2\right)\)

Mặt khác, ta cũng có  \(a,b,c\ne0\) (gt) nên \(a^2,b^2,c^2\ne0;\)   \(a^2+b^2\ne0;\)  \(b^2+c^2\ne0\)  và  \(c^2+a^2\ne0\)  \(\left(3\right)\)

Từ  \(\left(2\right)\)  và  \(\left(3\right)\), ta dễ dàng suy ra được  \(x=y=z=0\)

Vậy,  \(x^{2011}+y^{2011}+z^{2011}=0\)

16 tháng 12 2016

ta có \(\frac{x^2}{a^2}\)\(\frac{y^2}{b^2}\)+\(\frac{z^2}{c^2}\)\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

=> ( \(\frac{x^2}{a^2}\)\(\frac{y^2}{b^2}\)\(\frac{z^2}{c^2}\))( \(a^2+b^2+c^2\))= \(x^2+y^2+z^2\)

=> \(x^2\)\(\frac{\left(b^2+c^2\right)x^2}{a^2}\)\(y^2\)\(\frac{\left(a^2+c^2\right)y^2}{b^2}\)\(z^2\)\(\frac{\left(a^2+b^2\right)z^2}{c^2}\)\(x^2+y^2+z^2\)

=> \(\frac{\left(b^2+c^2\right)x^2}{a^2}\)\(\frac{\left(a^2+c^2\right)y^2}{b^2}\)\(\frac{\left(a^2+b^2\right)z^2}{c^2}\)= 0

nhận xét ...... ( tát cả đều lớn hơn hoặc = 0 nên cả tổng sẽ lớn hơn hoặc = 0)

dấu = xảy ra khi và chi khi x=y = z = 0 ( vì a,b,c khác 0)

vậy \(x^{2011}+y^{2011}+z^{2011}\)= 0 +0+0 = 0

6 tháng 1 2017

a)Ta có: ab+ac+bc=-7                        (ab+ac+bc)^2=49

nên

(ab)^2+(bc)^2+(ac)^2=49

nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98

b) (x^2+y^2+z^2)/(a^2+b^2+c^2)= 
=x^2/a^2+y^2/b^2+z^2/c^2 <=> 
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+ 
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+ 
+(b^2/c^2)z^2+(c^2/a^2)x^2+ 
+(c^2/b^2)y^2+z^2 <=> 
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+ 
+[(a^2+b^2)/c^2]z^2 = 0 (*) 
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2; 
và C=[(a^2+b^2)/c^2]z^2 
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm 
Từ (*) ta có A+B+C=0 
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0 
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0 
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0 
Vậy x^2011+y^2011+z^2011=0 
Và x^2008+y^2008+z^2008=0.

4 tháng 7 2020

Hình như đề hơi thiếu điều kiện phải không bạn?