K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#3107.101107`

\(A=1+3+3^2+3^3+...+3^{101}\)

$A = (1 + 3 + 3^2) + (3^3 + 3^4 + 3^5) + ... + (3^{99} + 3^{100} + 3^{101}$

$A = (1 + 3 + 3^2) + 3^3 (1 + 3 + 3^2)  + ... + 3^{99}(1 + 3 + 3^2)$

$A = (1 + 3 + 3^2)(1 + 3^3 + ... + 3^{99})$

$A = 13(1 + 3^3 + ... + 3^{99})$

Vì `13(1 + 3^3 + ... + 3^{99}) \vdots 13`

`\Rightarrow A \vdots 13`

Vậy, `A \vdots 13.`

8 tháng 11 2023

\(A=1+3+3^2+3^3+3^4+3^5+...+3^{101}\\=(1+3+3^2)+(3^3+3^4+3^5)+(3^6+3^7+3^8)+...+(3^{99}+3^{100}+3^{101})\\=13+3^3\cdot(1+3+3^2)+3^6\cdot(1+3+3^2)+...+3^{99}\cdot(1+3+3^2)\\=13+3^3\cdot13+3^6\cdot13+...+3^{99}\cdot13\\=13\cdot(1+3^3+3^6+...+3^{99})\)

Vì \(13\cdot(1+3^3+3^6...+3^{99}\vdots13\)

nên \(A\vdots13\)

\(\text{#}Toru\)

23 tháng 12 2023

A = 8⁸ + 2²⁰

= (2³)⁸ + 2²⁰

= 2²⁴ + 2²⁰

= 2²⁰.(2⁴ + 1)

= 2²⁰.17 ⋮ 17

Vậy A ⋮ 17

19 tháng 12 2021

\(S=\left(1+3+3^2\right)+...+3^7\left(1+3+3^2\right)\)

\(=13\left(1+...+3^7\right)⋮13\)

11 tháng 11 2021

A =3+32+33+...+3119

A=(3+32)+(33+34)+...(3118+3119)

A=3.(1+3)+33.(1+3)+...+3118.(1+3)

A=3.4+33.4+...+3118.4

A=4.(3+33+...+3118)\(⋮\)4

=>A\(⋮\)4

A=3+32+33+...+3119

A=(3+32+33)+...+(3117+3118+3119)

A=3.(1+3+9)+...+3117.(1+3+9)

A=3.13+...+3117.13

A=13.(3+...+3117)\(⋮\)13

vì   A\(⋮\)4

và  A\(⋮\)13

=>A\(⋮\)4.13

=>A\(⋮\)52

vậy A\(⋮\)4 và A\(⋮\)52

17 tháng 10 2021

undefined

8 tháng 2 2022

\(A=3+3^2+3^3+...+3^{2012}\\ A=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\\ A=120+...+3^{2008}.120\\ A=120.\left(1+...+3^{2008}\right)⋮120\)

8 tháng 2 2022

undefined

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Câu 1: 

$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$

$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$

$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$

-----------------

$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$

$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$

$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$

$=2+7(2^2+2^5+...+2^{2018})$

$\Rightarrow A$ chia $7$ dư $2$.

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Câu 2:

$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$

$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$

-------------------

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$

$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)

25 tháng 9 2016

mình ko biết

5 tháng 2 2021

phải là chứng minh A chia hết cho 121

Các số hạng trong tổng \(A\) đều chia hết cho \(3\) nên \(\Rightarrow A⋮3\)

Vậy \(A⋮3\)

1 tháng 1

A=3+3^2+3^3+3^4+...+3^12

A=(3+3^2+3^3)+(3^4+3^5+3^6)+.....+(3^10+3^11+3^12)   (gộp nhóm)

A=3.(1+3+3^2)+3^4.(1+3+3^2)+......+3^10.(1+3+3^2)        (phân phối)

A=3.13+3^4.13+....+3^10.13

A=13.(3+3^4+....+3^10)

Vì 13⋮13

nên 13.(3+3^4+...+3^10)⋮13

=>A⋮13