Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4.\left(\frac{1}{4}\right)^2+25\left[\left(\frac{3}{4}\right)^3:\left(\frac{5}{4}\right)^3\right]:\left(\frac{3}{2}\right)^3=4.\frac{1}{16}+25\left(\frac{27}{64}.\frac{64}{125}\right).\frac{8}{27}\)
\(=\frac{1}{4}+25.\frac{27}{125}.\frac{8}{27}=\frac{1}{4}+\frac{8}{5}=\frac{37}{20}\)
\(2^3+3\left(\frac{1}{2}\right)^0-1+\left[\left(-2\right)^2:\frac{1}{2}\right]-8=8+3-1+4.2-8=10\)
(1+\(\frac{1}{3}\)) x (1+\(\frac{1}{2x4}\)) x(1+\(\frac{1}{3x5}\))x(1+\(\frac{1}{4x6}\)) x .....x (1+ \(\frac{1}{2009x2011}\))
= \(\frac{2}{1x3}\)x \(\frac{2}{2x4}\)x \(\frac{2}{3x5}\)x \(\frac{2}{4x6}\)x....x \(\frac{2}{2009x2011}\)
= ..................
đến đây tự làm nhé
\(K=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}...\frac{-9999}{10000}=\left(-1\right)^{99}.\frac{1.3.2.4...99.101}{2.2.3.3.4.4...100.100}=-\frac{1.2...99}{2.3...100}.\frac{3.4...101}{2.3...100}=-\frac{1}{100}.\frac{101}{2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
\(A=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{4}+\frac{1}{6}-\frac{1}{2}\right)\left(63.1,2-21.3,6+1\right)}{1-2+3-4+....+99-100}\)
\(=\frac{\frac{100\left(100+1\right)}{2}\left(\frac{3+2-6}{12}\right)\left[63\left(1,2-1,2\right)+1\right]}{\left(1-2\right)+\left(3-4\right)+....+\left(99-100\right)}\)
\(=\frac{5050.\left(-\frac{1}{12}\right).1}{-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)}\)
\(=\frac{2525.\left(-\frac{1}{6}\right)}{-50}=\frac{101}{12}\)
\(=\frac{11}{-5}\cdot\frac{-9}{11}\cdot\frac{15}{-14}\cdot\frac{2}{5}+-\frac{2}{77}\cdot\frac{5}{-3}\)
\(=\frac{9}{5}\cdot-\frac{15}{14}\cdot\frac{2}{5}+\frac{10}{231}\)
\(=-\frac{841}{1155}\)
\(B=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right).....\left(1+\frac{1}{9}\right)\left(1+\frac{1}{10}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot.....\cdot\frac{10}{9}\cdot\frac{11}{10}\)
\(=\frac{3.4.5.....10.11}{2.3.4....10}=\frac{11}{2}\)
Ta có: \(A=\left[6.\left(-\frac{1}{3}\right)^2-3.\left(-\frac{1}{3}\right)+1\right]:\left(\frac{-1}{3}-1\right)\)
\(=\left(6.\frac{1}{9}-\left(-1\right)+1\right):\left(\frac{-4}{3}\right)\)
\(=\left(\frac{2}{3}+2\right).\left(\frac{-3}{4}\right)\)
\(=\frac{8}{3}.\left(-\frac{3}{4}\right)\)
\(=-2\)
\(B=\left(729-1^3\right)\left(729-3^3\right)...\left(729-125^3\right)\)
\(\Rightarrow B=\left(729-1^3\right)\left(729-3^3\right)...\left(729-9^3\right)...\left(729-125^3\right)\)
\(\Rightarrow B=\left(729-1^3\right)\left(729-3^3\right)...0...\left(729-125^3\right)\)
\(\Rightarrow B=0\)
Vì -2 < 0 nên A < B
Vậy A < B