K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

Biểu thức:

\(A=\frac{2020-x}{6-x}=\frac{2014+6-x}{6-x}=\frac{2014}{6-x}+1\)

Để A đạt giá trị lớn nhất:

thì \(\frac{2014}{6-x}\)đạt giá trị lớn nhất

<=> \(\frac{2014}{6-x}>0\) và \(6-x\)đạt giá trị bé nhất

=> \(6-x=1\Leftrightarrow x=5\)

Lúc đó A đạt giá trị lớn nhất là: \(maxA=\frac{2014}{6-5}+1=2015\)

27 tháng 3 2020

bài này lớp 7 nha bn

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

13 tháng 9 2019

Ta đặt t = \(\frac{1}{2004y}\)

Bài toán được đưa về tìm x để t bé nhất :
 Ta có \(t=\frac{\left(x+2004\right)^2}{2004x}=\frac{x^2+2.2004x+2004^2}{2004x}=\frac{x}{2004}+2+\frac{2004}{x}=\frac{x^2+2004^2}{2004x}+2\) ( 1 )

Ta thấy : Theo bất đẳng thức Côsi cho 2 số dương ta có :

\(x^2+2004^2\ge2.2004.x\Rightarrow\frac{x^2+2004^2}{2004x}\ge2\) ( 2 )

Dấu " = " xảy ra khi x = 2004 

Từ ( 1 ) và ( 2 ) \(\Rightarrow t\ge4\Rightarrow\) giá trị bé nhất của t = 4 khi x = 2004 

Vậy \(y_{max}=\frac{1}{2004t}=\frac{1}{8016}\) . Khi \(x=2004\)

Chúc bạn học tốt !!!

18 tháng 8 2020

a) ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)

\(N=\frac{\left(x+2\right)^2}{x}.\left(1-\frac{x^2}{x+2}\right)-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)^2}{x}.\frac{x+2-x^2}{x+2}-\frac{x^2+6x+4}{x}\)

\(N=\frac{\left(x+2\right)\left(x+2-x^2\right)-x^2-6x-4}{x}\)

\(N=\frac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)

\(N=\frac{-x^3-2x^2-2x}{x}\)

\(N=\frac{-x\left(x^2+2x+2\right)}{x}\)

\(N=-\left(x^2+2x+2\right)\)

b) \(N=-\left(x^2+2x+2\right)\)

\(\Leftrightarrow N=-\left(x^2+2x+1+1\right)\)

\(\Leftrightarrow N=-\left(x+1\right)^2-1\le-1\)

Max N = -1 \(\Leftrightarrow x=-1\)

Vậy .......................

19 tháng 5 2022

   `-4x^2+6x-1`

`=-(4x^2-2.2x. 3/2+9/4-5/4)`

`=-[(2x-3/2)^2-5/4]`

`=-(2x-3/2)^2+5/4`

Vì `-(2x-3/2)^2 <= 0 AA x`

`<=>-(2x-3/2)^2+5/4 <= 5/4 AA x`

 Hay `-4x^2+6x-1 <= 5/4 AA x`

Dấu "`=`" xảy ra`<=>(2x-3/2)^2=0<=>x=3/4`

Vậy `GTLN` của biêu thức là `5/4` khi `x=3/4`

21 tháng 10 2017

Ta có \(A=4-x^2+2x\) 

Nên GTLN của A là 4 

Vì GTLN của A là 4 nên \(x^2+2x=0\)

\(\Rightarrow x\left(x+2\right)=0\)

Để biểu thức trên có gia trị = 0 thì

x=0 hoặc x+2=0  Ta có x=0-2=-2

.Vậy A đạt giá trị lớn nhất khi x=0 hoặc x=-2

7 tháng 11 2017

\(A=-x^2+2x+4=-\left(x^2-2x+1\right)+5=-\left(x-1\right)^2+5\le5,\forall x\).
Vậy GTLN của \(A=5\) khi \(-\left(x-1\right)^2=0\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\).

9 tháng 7 2017

/x-3/>=0\(\Rightarrow\)-/x-3/<=0 maxP=12 khi x-3=0 \(\Rightarrow\)x=3

9 tháng 7 2017

\(P=-\left|x-3\right|+12\)

Vì \(-\left|x-3\right|\le0\Leftrightarrow-\left|x-3\right|+12\le12\)

Vậy GTLN của P là 12 tại \(-\left|x-3\right|=0\Leftrightarrow x=0\)

15 tháng 9 2016

 - |x-3|=12

<=> - |x-3|-12=0

|x-3|>=0

- |x-3|<=0

=>- |x-3|-12<=-12

dấu "=" xảy ra khi x=3

ý 2 làm tương tự

23 tháng 12 2020

a) \(P=-\left|x-3\right|=12\)

\(P=-\left|x-3\right|-12=0\)

Vì: \(-\left|x-3\right|\le0\forall x\)

\(\Rightarrow-\left|x-3\right|-12\le-12\forall x\)

\(\Leftrightarrow P_{max}=-12\Leftrightarrow-\left|x-3\right|=0\Leftrightarrow x=3\)

b) \(A=\left|x+13\right|+64\)

Vì: \(\left|x+13\right|\ge0\forall x\)

\(\Rightarrow\left|x+13\right|+64\ge64\forall x\)

\(\Leftrightarrow A_{min}=64\Leftrightarrow\left|x+13\right|=0\Leftrightarrow x=-13\)