Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk ra đáp án khác với đáp án ủa bn nên bn bào sai chứ j, thật ra cả 2 đáp án đều giống nhau, do biến đổi dấu nên trở thành 2 đáp án khác nhau thôi :V
để mk lm lại phần đáp án của mk ra giống đáp án của bn nek :V
\(a,\)\(P=\dfrac{-x-1}{x-1}\)
\(\Rightarrow\dfrac{-\left(-x-1\right)}{-\left(x-1\right)}=\dfrac{x-1}{-x+1}=\dfrac{x-1}{1-x}\)
Còn câu b thì hôm qua bn ghi là \(x=\dfrac{1}{\sqrt{2}}\) chứ có pk là \(1\sqrt{2}\) đou >:V
\(b,\)Thay \(x=1\sqrt{2}\) vào \(P\) ta có :
\(P=\dfrac{x-1}{1-x}\)
\(P=\dfrac{1\sqrt{2}-1}{1-1\sqrt{2}}=3+2\sqrt{2}\)
\(B=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{\sqrt{x}+1}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{x+\sqrt{x}-2\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Thay \(x=6-2\sqrt{5}\) vào B ta có:
\(B=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\\ =\dfrac{\sqrt{6-2\sqrt{5}}-1}{\sqrt{6-2\sqrt{5}}+1}\\ =\dfrac{\sqrt{5-2\sqrt{5}+1}-1}{\sqrt{5-2\sqrt{5}+1}+1}\\ =\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}-1}{\sqrt{\left(\sqrt{5}-1\right)^2}+1}\\ =\dfrac{\sqrt{5}-1-1}{\sqrt{5}-1+1}\\ =\dfrac{\sqrt{5}-2}{\sqrt{5}}\\ =\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{5}\\ =\dfrac{5-2\sqrt{5}}{5}\)
Lời giải:
a. ĐKXĐ: $x>0; x\neq 1$
\(P=\frac{1}{\sqrt{x}+1}+\frac{x}{\sqrt{x}(1-\sqrt{x})}=\frac{1}{\sqrt{x}+1}+\frac{\sqrt{x}}{1-\sqrt{x}}=\frac{1-\sqrt{x}+x+\sqrt{x}}{(1-\sqrt{x})(\sqrt{x}+1)}=\frac{x+1}{1-x}\)
b.
\(P=\frac{\frac{1}{\sqrt{2}}+1}{1-\frac{1}{\sqrt{2}}}=3+2\sqrt{2}\)
Sửa đề: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{9}{4}\end{matrix}\right.\)
a) Ta có: \(P=\left(2-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
\(=\left(\dfrac{2\cdot\left(2\sqrt{x}-3\right)}{2\sqrt{x}-3}-\dfrac{\sqrt{x}-1}{2\sqrt{x}-3}\right):\left(\dfrac{6\sqrt{x}+1}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(2\sqrt{x}-3\right)}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{4\sqrt{x}-6-\sqrt{x}+1}{2\sqrt{x}-3}:\dfrac{6\sqrt{x}+1+2x-3\sqrt{x}}{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}-3}\cdot\dfrac{\left(2\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{2x+3\sqrt{x}+1}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{2x+2\sqrt{x}+\sqrt{x}+1}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(\sqrt{x}+1\right)+\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(3\sqrt{x}-5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}+1\right)}\)
\(=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
b) Ta có: \(x=\dfrac{3-2\sqrt{2}}{4}\)
\(\Leftrightarrow x=\dfrac{2-2\cdot\sqrt{2}\cdot1+1}{4}\)
\(\Leftrightarrow x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\)(thỏa ĐK)
Thay \(x=\dfrac{\left(\sqrt{2}-1\right)^2}{4}\) vào biểu thức \(P=\dfrac{3\sqrt{x}-5}{2\sqrt{x}+1}\), ta được:
\(P=\left(3\cdot\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{4}}-5\right):\left(2\cdot\sqrt{\dfrac{\left(\sqrt{2}-1\right)^2}{4}}+1\right)\)
\(\Leftrightarrow P=\left(3\cdot\dfrac{\sqrt{2}-1}{2}-5\right):\left(2\cdot\dfrac{\sqrt{2}-1}{2}+1\right)\)
\(\Leftrightarrow P=\left(\dfrac{3\cdot\left(\sqrt{2}-1\right)}{2}-\dfrac{10}{2}\right):\left(\sqrt{2}-1+1\right)\)
\(\Leftrightarrow P=\dfrac{3\sqrt{2}-3-10}{2}:\sqrt{2}\)
\(\Leftrightarrow P=\dfrac{3\sqrt{2}-13}{2}\cdot\sqrt{2}\)
\(\Leftrightarrow P=\dfrac{6-13\sqrt{2}}{2}\)
Vậy: Khi \(x=\dfrac{3-2\sqrt{2}}{4}\) thì \(P=\dfrac{6-13\sqrt{2}}{2}\)
a) Ta có: \(P=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x^2+\sqrt{x}}{x\sqrt{x}+x}\)
\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x+\sqrt{x}+1}{\sqrt{x}}-\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)
1: Khi x=64 thì \(A=\dfrac{8+2}{8}=\dfrac{10}{8}=\dfrac{5}{4}\)
2: \(B=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
3: A/B>3/2
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{3}{2}>0\)
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{3}{2}>0\)
=>\(\dfrac{2\sqrt{x}+2-3\sqrt{x}}{\sqrt{x}\cdot2}>0\)
=>\(-\sqrt{x}+2>0\)
=>-căn x>-2
=>căn x<2
=>0<x<4
1) Thay x=64 vào A ta có:
\(A=\dfrac{2+\sqrt{64}}{\sqrt{64}}=\dfrac{2+8}{8}=\dfrac{5}{4}\)
2) \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
\(B=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\dfrac{x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(B=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
3) Ta có:
\(\dfrac{A}{B}>\dfrac{3}{2}\) khi
\(\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}>\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}+2}>\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}}>\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{3}{2}>0\)
\(\Leftrightarrow\dfrac{2\sqrt{x}+2-3\sqrt{x}}{2\sqrt{x}}>0\)
\(\Leftrightarrow\dfrac{2-\sqrt{x}}{2\sqrt{x}}>0\)
Mà: \(2\sqrt{x}\ge0\forall x\)
\(\Leftrightarrow2-\sqrt{x}>0\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Leftrightarrow x< 4\)
Kết hợp với đk:
\(0< x< 4\)
Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(=\dfrac{x-1}{x}\)
b) Sửa đề: \(2\sqrt{x+1}=5\)
Ta có: \(2\sqrt{x+1}=5\)
\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)
\(\Leftrightarrow x+1=\dfrac{25}{4}\)
hay \(x=\dfrac{21}{4}\)(thỏa ĐK)
Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:
\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)
Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)
c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)
\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)
mà \(2x>0\forall x\) thỏa mãn ĐKXĐ
nen \(2\left(x-1\right)-x+1>0\)
\(\Leftrightarrow2x-2-x+1>0\)
\(\Leftrightarrow x-1>0\)
hay x>1
Kết hợp ĐKXĐ, ta được: x>1
Vậy: Để \(P>\dfrac{1}{2}\) thì x>1
\(a,P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{1-x}\right)\left(dkxd:x\ge0,x\ne1\right)\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)
\(=\dfrac{\sqrt{x}.\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\dfrac{x-2}{\sqrt{x}}\)
\(b,x=4+2\sqrt{3}\Rightarrow P=\dfrac{\left(4+2\sqrt{3}\right)-2}{\sqrt{4+2\sqrt{3}}}\)
\(=\dfrac{2\sqrt{3}+4-2}{\sqrt{\sqrt{3}^2+2\sqrt{3}+1}}\)
\(=\dfrac{2\sqrt{3}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{\left|\sqrt{3}+1\right|}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{\sqrt{3}+1}=2\)
a: \(P=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{x-1}\)
\(=\dfrac{x-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x-2}{\sqrt{x}}\)
b: Khi x=4+2căn 3 thì \(P=\dfrac{2+2\sqrt{3}}{\sqrt{3}+1}=2\)
\(a,=\dfrac{1}{\sqrt{x}+1}-\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-\sqrt{x}-x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(x-1\right)}\)
\(=\dfrac{x-\sqrt{x}-x\sqrt{x}-x}{x\sqrt{x}-\sqrt{x}}\)
\(=\dfrac{-\sqrt{x}\left(x+1\right)}{\sqrt{x}\left(x-1\right)}\)
\(=\dfrac{-x-1}{x-1}\)
Vậy\(P=\dfrac{-x-1}{x-1}\)
\(b,\) Thay \(x=\dfrac{1}{\sqrt{2}}\) vào \(P\) ta có :
\(P=\dfrac{-\left(\dfrac{1}{\sqrt{2}}\right)-1}{\dfrac{1}{\sqrt{2}}-1}=\dfrac{-\sqrt{2}}{2}\)
Vậy \(P=\dfrac{-\sqrt{2}}{2}\) khi \(x=\dfrac{1}{\sqrt{2}}\)
sai r bạn ơi