K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2019

ta có M=\(\frac{20-7n}{5-2n}=>2M=\frac{40-14n}{5-2n}\left(=\right)2M=\frac{5+7.\left(5-2n\right)}{5-2n}\left(=\right)\frac{5}{5-2n}+7=>M=\frac{5}{10-4n}+\frac{7}{2}\)

Để M nhỏ nhất thì \(\frac{5}{10-4n}+\frac{7}{2}\)nhỏ nhất 

để \(\frac{5}{10-4n}+\frac{7}{2}\)nhỏ nhất thì \(\frac{5}{10-4n}\)nhỏ nhất 

xét 2 TH

TH1:10-4n>0=>\(\frac{5}{10-4n}\)>0

TH2 10-4<0=>\(\frac{5}{10-4n}< 0\)

để \(\frac{5}{10-4n}\)nhỏ nhất thì \(\frac{5}{10-4n}< 0\)mà n nguyên =>10-4n=-2(=)4n=12(=)n=3

=> M=\(\frac{5}{10-12}+\frac{7}{2}=\frac{-5}{2}+\frac{7}{2}=1\)

Vậy min(m)=1 khi n=3

2 tháng 6 2019

\(D=\frac{2n-3}{n-2}\)đạt giá trị lớn nhất <=> 2n - 3 lớn nhất và n - 2 nhỏ nhất (đk n \(\ne\)2)

Khi D lớn nhất D phải là số tự nhiên, do đó n - 2 phải  là số tự nhiên nhỏ nhất

=> n - 2 = 1

=> n = 2+ 1 

=> n = 3

Thay n vào biểu thức ở tử số ta có : 2.3 - 3 = 6 - 3 = 3

Vậy n = 3 và giá trị lớn nhất của D = \(\frac{2.3-3}{3-2}=\frac{3}{1}=3\)

2 tháng 6 2019

trl

n=3

hok tốt

10 tháng 5 2021

a) Để P đạt giá trị nguyên => 4n-1\(⋮\)2n-3

                                        => 2.(2n-3)+5\(⋮\)2n-3

   Mà 2.(2n-3)\(⋮\)2n-3

=>5\(⋮\)2n-3

=>2n-3\(\in\)Ư(5)

lập bảng

2n-31-15-5
n214-1

Vậy n \(\in\){-1;1;2;4}

b)Để P đạt giá trị nhỏ nhất => 2n-3 phải là số tự nhiện nhỏ nhất khác 0

TH1 2n-3=1

        2n=1+3

       2n=4

        n=4:2

        n=2( chọn)

 Vậy n=2

7 tháng 3 2019

\(A=\frac{x-5}{x-3}=\frac{x-3-2}{x-3}=\frac{x-3}{x-3}-\frac{2}{x-3}=1-\frac{2}{x-3}\)

Để A đạt giá trị nhỏ nhất thì \(\frac{2}{x-3}\) đạt giá trị lớn nhất \(\Leftrightarrow x-3\)đạt giá trị nguyên dương nhỏ nhất \(\Leftrightarrow x-3=1\Leftrightarrow x=4\)

Vậy với x=4 thì A đạt giá trị nhỏ nhất.

12 tháng 5 2020

Ta có \(A=\frac{2n-1}{n+3}\left(n\ne-3\right)\)

\(\Leftrightarrow A=\frac{2\left(n+3\right)-7}{n+3}=2-\frac{7}{n+3}\)

a) Để A đạt giá trị nguyên thì \(\frac{7}{n+3}\)đạt giá trị nguyên

=> 7 chia hết cho n+3

=> n+3\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

ta có bảng

n+3-7-117
n-10-4-24
12 tháng 5 2020

\(A=\frac{2n-1}{n+3}=\frac{2\left(n+3\right)-7}{n+3}=2-\frac{7}{n+3}\)

A nguyên => \(\frac{7}{n+3}\)nguyên

=> \(n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

n+31-17-7
n-2-44-10