K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đa thức M(x) = 3x4 - 2x3 + 5x2 - 4x + 1

\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)

\(=3x^4-2x^3+5x^2-4x+1-3x^4+2x^3-3x^2+7x+5\)

\(=2x^2+3x+6\)

b, Tại x = -x  

< = > 2x = 0 <=> x = 0 thì giá trị của biểu thức P ( x ) = 6

 

11 tháng 3 2022

A = 3x^3 +6x^2 + 3xy^3

x= 1 phần 2 ;  p = -1 phần 3

A=3.1 phần 2^3 . -1 phần 3     + 6.(1 phần 2)^2 . (-1 Phần 3)^2+3 1 phần 2 . (-1 phần 3)^3

=-1 phần 8      + -1 phần 2 - 1 phần 2

= -1 phần 4

25 tháng 4 2020

bài 1 : 

B=15-3x-3y

a) x+y-5=0 

=>x+y=-5

B=15-3x-3y <=> B=15-3(x+y)

Thay x+y=-5 vào biểu thức  B ta được :

B=15-3(-5)

B=15+15

B=30

Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30

b)Theo đề bài ; ta có :

B=15-3x-3.2=10

15-3x-6=10

15-3x=16

3x=-1

\(x=\frac{-1}{3}\)

Bài 2:

a)3x2-7=5

3x2=12

x2=4

x=\(\pm2\)

b)3x-2x2=0

=> 3x=2x2

=>\(\frac{3x}{x^2}=2\)

=>\(\frac{x}{x^2}=\frac{2}{3}\)

=>\(\frac{1}{x}=\frac{2}{3}\)

=>\(3=2x\)

=>\(\frac{3}{2}=x\)

c) 8x2 + 10x + 3 = 0

=>\(8x^2-2x+12x-3=0\)

\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)

vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)

Bài 5 đề  sai  vì  |1| không thể =2

20 tháng 5 2021

P = x3 - 2x2y - 3x2 - 2xy + 4y2 + 3x - 5

= (x3 - 2x2y - 3x2) - (2xy - 4y2 - 6y) + (3x - 6y - 9) + 4

= x2(x - 2y - 3) - 2y(x - 2y - 3) + 3(x - 2y-  3) + 4

= (x - 2y - 3)(x2 - 2y + 3) + 4 

= 4 (Vì x - 2y - 3 = 0)

12 tháng 4

Bài 1:

|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}

A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5

A(-1) = \(\dfrac{2}{9}\) + 1 + 5

A (-1) = \(\dfrac{56}{9}\)

A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5

A(1) = \(\dfrac{2}{9}\) - 1 + 5

A(1) = \(\dfrac{38}{9}\)

 

12 tháng 4

|y| = 1 ⇒ y \(\in\) {-1; 1} 

⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))

B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1

B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)

B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))- 3.(-\(\dfrac{1}{3}\)).1 + 12

B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1

B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\) 

B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1

B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)

B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2

B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1

B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)

 

14 tháng 4 2023

A       = 2\(x^2\)y + \(xy\) - 3\(xy\)

Thay \(x\) = -2; y = 4 vào biểu thức A ta có: 

A      =  2\(\times\) (-2)2 \(\times\) 4 + (-2) \(\times\) 4 - 3 \(\times\) (-2) \(\times\) 4

A     = 2 \(\times\) 4 \(\times\) 4 - 8 + 6 \(\times\) 4

A     = 8 \(\times\) 4 - 8 + 24

A     =  32 - 8 + 24

A    =  24 + 24

A    =    48

14 tháng 4 2023

B = (2\(x^2\) + \(x\) - 1) - ( \(x^2+5x-1\) )

Thay \(x\) = - 2 vào biểu thức B ta có:

B = { 2\(\times\)(-2)2 + (-2) - 1} - { (-2)2 +5\(\times\)(-2) - 1}

B = { 2 \(\times\) 4  - 3} - { 4 - 10 - 1}

B = { 8 - 3} - { 4 - 11}

B = 5 - (-7)

B = 5 + 7

B = 12

27 tháng 3 2016

\(N=2x^4+3x^2y^2+y^4+y^2\)

\(N=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)

\(N=2x^2x^2+2x^2y^2+x^2y^2+y^2y^2+y^2\)

\(N=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2+1\right)\)

Thay x2+y2=1 vào ta được:

\(N=2x^2.1+y^2.\left(1+1\right)=2x^2+2y^2=2\left(x^2+y^2\right)=2.1=2\)

Vậy N=2