K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2016

Không chép lại đề nhé:

\(1A=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)

\(=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)

\(=\frac{x+3}{x^2+9}.\frac{\left(x-3\right)\left(x^2+9\right)}{\left(x-3\right)^2}\)

\(=\frac{x+3}{x-3}\)

11 tháng 12 2016

b/ Với x > 0 thì P không xác định khi x = 3 (vì mẫu sẽ = 0)

c/ \(A=\frac{x+3}{x-3}=1+\frac{6}{x-3}\)

Để A nguyên thì (x - 3) phải là ước nguyên của 6 hay

(x - 3) \(\in\)(- 1; - 2; - 3, - 6; 1; 2; 3; 6)

Thế vào sẽ tìm được A

ĐKXĐ thì b tự làm nhé 

3 tháng 3 2019

Alo đề nghị viết đề một cách chính xác 

27 tháng 7 2021

nhanh giùm mình được không

 

Bài 1: 

a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)

\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)

6 tháng 3 2016

ai giup mink vs

Bài 1:

a) x2x≠2

Bài 2:

a) x0;x5x≠0;x≠5

b) x210x+25x25x=(x5)2x(x5)=x5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

c) Để phân thức có giá trị nguyên thì x5xx−5x phải có giá trị nguyên.

=> x=5x=−5

Bài 3:

a) (x+12x2+3x21x+32x+2)(4x245)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

=(x+12(x1)+3(x1)(x+1)x+32(x+1))2(2x22)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

=(x+1)2+6(x1)(x+3)2(x1)(x+1)22(x21)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

=(x+1)2+6(x2+3xx3)(x1)(x+1)2(x1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

=[(x+1)2+6(x2+2x3)]25=[(x+1)2+6−(x2+2x−3)]⋅25

=[(x+1)2+6x22x+3]25=[(x+1)2+6−x2−2x+3]⋅25

=[(x+1)2+9x22x]25=[(x+1)2+9−x2−2x]⋅25

=2(x+1)25+18525x245x=2(x+1)25+185−25x2−45x

=2(x2+2x+1)5+18525x245x=2(x2+2x+1)5+185−25x2−45x

=2x2+4x+25+18525x245x=2x2+4x+25+185−25x2−45x

=2x2+4x+2+18525x245x=2x2+4x+2+185−25x2−45x

=2x2+4x+20525x245x=2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

19 tháng 12 2019

ê k bn với mk ik

😘 😘 😘 😘

1 tháng 4 2022

dễ ẹc tự làm đi :v

1 tháng 4 2022

-Không làm đừng spam nhé bạn.

18 tháng 12 2022

Ta có: \(B=x^3+3x^2+3x+9\)

\(=x^2\left(x+3\right)+3\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2+3\right)\)

Để B là số nguyên tố thì: \(\left[{}\begin{matrix}x+3=1\\x^2+3=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x^2=-2\left(voli\right)\end{matrix}\right.\)

Thay \(x=-2\) vào B ta được:

\(B=\left(-2+3\right)\left[\left(-2\right)^2+3\right]=7\) là số nguyên tố.

Vậy \(x=-2\)

 

11 tháng 8 2023

a) \(x^3-x^2+3x-3>0\)

\(\Leftrightarrow x^2\left(x-1\right)+3\left(x-1\right)>0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x-1\right)>0\) 

Mà: \(x^2+3>0\forall x\) 

\(\Leftrightarrow x-1>0\)

\(\Leftrightarrow x>1\)

b) \(x^3+x^2+9x+9< 0\)

\(\Leftrightarrow x^2\left(x+1\right)+9\left(x+1\right)< 0\)

\(\Leftrightarrow\left(x^2+9\right)\left(x+1\right)< 0\)

Mà: \(x^2+9>0\forall x\)

\(\Leftrightarrow x+1< 0\)

\(\Leftrightarrow x< -1\)

d) \(4x^3-14x^2+6x-21< 0\)

\(\Leftrightarrow2x^2\left(2x-7\right)+3\left(2x-7\right)< 0\)

\(\Leftrightarrow\left(2x^2+3\right)\left(2x-7\right)< 0\)

Mà: \(2x^2+3>0\forall x\)

\(\Leftrightarrow2x-7< 0\)

\(\Leftrightarrow2x< 7\)

\(\Leftrightarrow x< \dfrac{7}{2}\)

d) \(x^2\left(2x^2+3\right)+2x^2>-3\)

\(\Leftrightarrow2x^4+3x^2+2x^2+3>0\)

\(\Leftrightarrow2x^4+5x^2+3>0\)

\(\Leftrightarrow\left(x^2+1\right)\left(2x^2+3\right)>0\) 

Mà: 

\(x^2+1>0\forall x\)

\(2x^2+3>0\forall x\)

\(\Rightarrow x\in R\)

a: =>x^2(x-1)+3(x-1)>0

=>(x-1)(x^2+3)>0

=>x-1>0

=>x>1

b: =>x^2(x+1)+9(x+1)<0

=>(x+1)(x^2+9)<0

=>x+1<0

=>x<-1

c: 4x^3-14x^2+6x-21<0

=>2x^2(2x-7)+3(2x-7)<0

=>2x-7<0

=>x<7/2

d: =>x^2(2x^2+3)+2x^2+3>0

=>(2x^2+3)(x^2+1)>0(luôn đúng)