K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

Ta có: \(M=\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+2=\left(x-2y\right)^2+\left(y-1\right)^2+2\)

Vì \(\left(x-2y\right)^2,\left(y-1\right)^2>0\)với mọi x,y nên M luôn dương

Ta có điều phải chứng minh

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

`#3107.\text {DN}`

a)

\((2x-3)^2-x(3-x)+5x-4x^2+17\)

`= 4x^2 - 12x + 9 - 3x + x^2 + 5x - 4x^2 + 17`

`= x^2 - 10x + 26`

b)

`M = x^2 - 10x + 26`

`= [(x)^2 - 2*x*5 + 5^2] + 1`

`= (x - 5)^2 + 1`

Vì `(x - 5)^2 \ge 0` `AA` `x => (x - 5)^2 + 1 \ge 1` `AA` `x`

Vậy, giá trị biểu thức M luôn có giá trị dương với mọi x.

27 tháng 4 2016

(x^2-2xy+y^2)+(y^2+2y+1)+3y^2+1

=(x+y)^2+(y+1)^2+3y^2+1>1

vay A luon duong

27 tháng 4 2016

A=x^2-4xy-2y+2+5y^2

=x^2-4xy+4y^2-2y+2+y^2

=(x-2y)^2+(y^2-2y+1)+1

=(x-2y)^2+(y-1)^2+1

ta có (x-2y)^2>/0 với mọi x,y

         (y-1)^2>/0 với mọi x,y

          1>0

=> (x-2y)^2+(y-1)^2+1 >0 với mọi x,y

=> A luôn duong với mọi x,y

23 tháng 12 2018

\(x^2+4x-4=0\Leftrightarrow x^2+4x+4=8\Leftrightarrow\left(x+2\right)^2=8\)

\(\Leftrightarrow x+2=\sqrt{8}\Leftrightarrow x=\sqrt{8}-2\)

23 tháng 12 2018

Bài 2 đề bn viết thiếu đấu + đó

Ta có M=x2+4xy+5y2-2y+3

=(x2+4xy+4y2)+(y2-2y+1)+2

=(x+2y)2 +(y-1)2+2

Do \(\left(x+2y\right)^2+\left(y-1\right)^2\ge0\Rightarrow M\ge2\)

=> đpcm

11 tháng 5 2017

\(A=X^2-4XY-2Y+2+5Y^2\)

\(=X^2-4XY+4Y^2+Y^2-2Y+1+1\)

\(=\left(X-2Y\right)^2+\left(Y-1\right)^2+1>0\)

26 tháng 11 2018

a, \(M=\frac{xy^2+y^2\left(y^2-x\right)+1}{x^2y^4+2y^4+x^2+2}=\frac{y^2\left(x+y^2-x\right)+1}{y^4\left(x^2+2\right)+\left(x^2+2\right)}=\frac{y^4+1}{\left(y^4+1\right)\left(x^2+2\right)}=\frac{1}{x^2+2}\)

Thay x=-3 vào M

=>\(M=\frac{1}{\left(-3\right)^2+2}=\frac{1}{11}\)

b, Vì \(x^2\ge0\Rightarrow x^2+2\ge2\Rightarrow M=\frac{1}{x^2+2}>0\)

31 tháng 7 2020

\(-x^2+4xy-5y^2-8y-18\)

\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)

\(=-\left(x+2y\right)^2-\left(y+4\right)^2-2\)

Vì \(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le\forall x;y\)

\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\forall x;y\)

\(\Rightarrow dpcm\)

1 tháng 8 2020

a) \(-x^2+4xy-5y^2-8y-18=-\left(x^2-4xy+5y^2+8y+18\right)\)

\(=-\left[\left(x^2-4xy+4y^2\right)+\left(y^2+8y+16\right)+2\right]\)

\(=-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]\)

Vì \(\left(x-2y\right)^2\ge0\forall x,y\)\(\left(y+4\right)^2\ge0\forall y\)\(2>0\)

\(\Rightarrow\left(x-2y\right)^2+\left(y+4\right)^2+2>0\)

\(\Rightarrow-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]< 0\)

\(\Rightarrow-x^2+4xy-5y^2-8y-18\)luôn âm với mọi x ( đpcm )

9 tháng 4 2020

Ta có : Q = x2 - 2xy -12x +y2 +12y + 36 + 5y2 -10y + 5 + 1976

               = [ x2 -2x(y + 6 ) + ( y + 6 )2 ] + 5 (y2 -2y +1 ) +1976

                = ( x- y - 6 )2 + 5 (y-1)2 + 1976

Vì ( x - y - 6)2 \(\ge\)0 với mọi x ; y ;5 .(y-1)2 \(\ge\)0 với mọi x ; y và 1976 > 0 

Nên biểu thức Q luôn nhận giá trị dương với mọi x ;y

9 tháng 4 2020

Q=x2+6y2−2xy−12x+2y+2017

Q=(x2-2xy+y2)-(12x-12y)+36+(5y2-10y+5)+1976

=(x-y)2-12(x-y)+36+5(y2-2y+1)+1976

=[(x-y)2-12(x-y)+36]+5(y-1)2+1976

=(x-y-6)2+5(y-1)2+1976

do (x-y-6)2 ≥ 0 ∀ x,y

(y-1)2 ≥ 0 ∀ y

=> (x-y-6)2+5(y-1)2+1976 ≥ 1976

=> Q≥ 1976

=> MinA=1976 khi

y-1=0

=>y=1

x-y-6=0

=>x-1-6=0

=>x-7=0

=>x=7

Vậy GTNN của Q =1976 khi x=7 và y=1

23 tháng 6 2017

a) 

\(=x^2+2.1,5x+1.5^2+0,75\)

\(=\left(x+1.5\right)^2+0,75\)

Vì (x+1.5)^2 luôn dương và 0,75 dương nên biểu thức luôn dương

b) 

\(=x^2+2x+1+y^2-4y+4+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\)

Lập luận tương tự câu a), được biểu thức luôn dương

c)

\(=x^2+2xy+y^2+x^2-2x+1+1\)

\(=\left(x+y\right)^2+\left(x-1\right)^2+1\)

Lập luận tương tự