Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo nha bạn :
Câu hỏi của Trần Minh Hưng - Toán lớp | Học trực tuyến
1/ Để cho \(\left(n^2+3\right)⋮\left(n+1\right)\) thì
\(A=\frac{n^2+3}{n+1}\) là 1 số nguyên
Ta có: \(A=\frac{n^2+3}{n+1}=n-1+\frac{4}{n+1}\)
Để A nguyên thì (n + 1) phải là ước nguyên của 4 hay
\(\left(n+1\right)=\left(-4,-2,-1,1,2,4\right)\)
\(\Rightarrow x=\left(-5,-3,-2,0,1,3\right)\)
D=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^2}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)
D=\(\frac{1}{3}+\frac{101}{3^{101}}\)
D=\(\frac{1}{3}\)
\(\frac{1}{3}và\frac{3}{4}\)
\(\frac{1}{3}=\frac{4}{12}\)
\(\frac{3}{4}=\frac{9}{12}\)
Vì\(\frac{4}{12}< \frac{9}{12}Vậy\frac{1}{3}< \frac{3}{4}\)
= \(1+\frac{1}{3}+1+\frac{1}{9}+1+\frac{1}{27}+...+1+\frac{1}{3^{98}}\)\(\frac{1}{3^{98}}\)
\(=1.98+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)
Đặt A=\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)
\(\Rightarrow3A-A=2A=1-\frac{1}{3^{98}}\Rightarrow A=\frac{1-\frac{1}{2^{98}}}{2}< 1\)
\(\Rightarrow B=98+A< 98+1< 99< 100\)
\(\Rightarrow B< 100\)
Xét \(B=\frac{4}{3}+\frac{10}{9}+...+\frac{3^{98}+1}{3^{98}}\)
\(\Leftrightarrow B=\frac{3+1}{3}+\frac{9+1}{9}+...+\frac{3^{98}+1}{3^{98}}\)
\(\Leftrightarrow B=\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{9}\right)+...+\left(1+\frac{1}{3^{98}}\right)\)(có 98 cặp số hạng)
\(\Leftrightarrow B=\left(1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)\)(có 98 số hạng 1)
\(\Leftrightarrow B=98+\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)\)
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)
Lấy 3A-A, ta được:
\(2A=1-\frac{1}{3^{98}}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2\cdot3^{98}}\)(*)
Thay (*) vào biểu thức B, ta được
\(B=98+\frac{1}{2}-\frac{1}{2\cdot3^{98}}< 100\)
VẬY, B<100 (ĐPCM)
Ta có :
\(B=\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}\)
\(B=\frac{3+1}{3}+\frac{9+1}{9}+\frac{27+1}{27}+...+\frac{3^{98}+1}{3^{98}}\)
\(B=\frac{3}{3}+\frac{1}{3}+\frac{9}{9}+\frac{1}{9}+\frac{27}{27}+\frac{1}{27}+...+\frac{3^{98}}{3^{98}}+\frac{1}{3^{98}}\)
\(B=1+\frac{1}{3}+1+\frac{1}{9}+1+\frac{1}{27}+...+1+\frac{1}{3^{98}}\)
\(B=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^{98}}\right)\)
\(B=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)
Do từ \(1\) đến \(98\) có \(98-1+1=98\) số hạng nên có \(98\) số \(1\) suy ra :
\(B=98+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\) ta có :
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)
\(2A=1-\frac{1}{3^{98}}< 1\)
Mà \(2A< 1\)\(\Rightarrow\)\(A< 1\)
Do đó :
\(B=98+\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)< 98+1=99< 100\)
\(\Rightarrow\)\(B< 100\) ( đpcm )
Vậy \(B< 100\)
Chúc bạn học tốt ~