K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

\(A=3+3^2+3^3+3^4+...+3^{2015}+3^{2016}\\\)

\(A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2015}\left(1+3\right)\)

\(A=\left(1+3\right).\left(3+3^3+...+3^{2015}\right)\)

\(A=4.\left(3+3^3+...+3^{2015}\right)\)

Suy ra    : \(A⋮4\)

28 tháng 4 2015

1.

a.Để A là phân số thì n - 5 khác 0 => n khác 5

b.Để A \(\in\)Z thì 3 chia hết cho n - 5 => n - 5 \(\in\) Ư(3) = {1; 3; -1; -3}

Ta có bảng sau:

n - 51-13-3
n6482

Vậy n \(\in\){6; 4; 8; 2} thì A \(\in\)Z.

 

28 tháng 4 2015

2.

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}>\frac{1}{40}.20=\frac{1}{2}\)

\(A=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}

18 tháng 4 2018

vì A là tổng của các số dương nên A>0(1)

A=1/2  +  1/2^2  +  1/2^3  +   + 1/2^100 

2A= 1 +  1/2  + 1/2^2 + ......+ 1/2^99

2A-A = 1 - 1/2^99

hay A= 1 - 1/2^99 <1 (2)

từ (1); (2) => 0<A<1 => ĐPCM. chúc hok tốt

18 tháng 4 2018

Thanks ! Nhưng đáp án đúng thì cách trình bày có đúng k? 

29 tháng 5 2017

Ta có :

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+...+\left(1-\frac{99}{100}\right)\right]\)

\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-100+\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

29 tháng 5 2017

ta có 100-(1+1/2+1/3+.....+1/100)

=(1+1+1......1)(99 số 1)-(1+1/2+1/3+......+1/100)

=(1-1)+(1-1/2)+(1-1/3)+.......+(1-1/100)

=1/2+2/3+3/4+.....+99/100

9 tháng 5 2018

CÓ khi nào sai đề bài không?

9 tháng 5 2018

ko sai đâu ạ

22 tháng 4 2017

Ta có :

\(D=\dfrac{1}{3}+\dfrac{2}{3^2}+\dfrac{3}{3^3}+..............+\dfrac{100}{3^{100}}+\dfrac{101}{3^{101}}\)

\(3D=1+\dfrac{2}{3}+\dfrac{3}{3^2}+.............+\dfrac{100}{3^{99}}\)

\(3D-D=\left(1+\dfrac{2}{3}+\dfrac{3}{3^3}+.....+\dfrac{100}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{2}{3^2}+.......+\dfrac{101}{3^{101}}\right)\)

\(2D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+............+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\)

\(6D=3+1+\dfrac{1}{3}+............+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\)

\(6D-2D=\left(3+1+\dfrac{1}{3}+..........+\dfrac{1}{3^{98}}-\dfrac{100}{3^{99}}\right)-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+......+\dfrac{1}{3^{99}}-\dfrac{100}{3^{100}}\right)\)\(4D=3-\dfrac{100}{3^{99}}-\dfrac{1}{3^{99}}+\dfrac{100}{3^{100}}\)

\(4D=3-\dfrac{300}{3^{100}}-\dfrac{3}{3^{100}}+\dfrac{100}{3^{100}}\)

\(4D=3-\dfrac{203}{3^{100}}< 3\)

\(\Rightarrow D< \dfrac{3}{4}\rightarrowđpcm\)

~ Học tốt ~

28 tháng 3 2019

6D ở đâu ra hả bn Nguyễn Thanh Hằng

21 tháng 5 2016

D=\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^2}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

D=\(\frac{1}{3}+\frac{101}{3^{101}}\)

D=\(\frac{1}{3}\)

\(\frac{1}{3}và\frac{3}{4}\)

\(\frac{1}{3}=\frac{4}{12}\)

\(\frac{3}{4}=\frac{9}{12}\)

\(\frac{4}{12}< \frac{9}{12}Vậy\frac{1}{3}< \frac{3}{4}\)