K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2015

a, ĐK: \(a\ge0;\) a khác 4

b,\(A=\frac{a+3\sqrt{a}+2+2a-4\sqrt{a}-5\sqrt{a}-2}{\left(\sqrt{a}-2\right)\cdot\left(\sqrt{a}+2\right)}=\frac{3a-6\sqrt{a}}{\left(\sqrt{a}+2\right)\cdot\left(\sqrt{a}-2\right)}=\frac{3\sqrt{a}}{\sqrt{a}+2}\)

c, để A= 2 KHI \(\frac{3\sqrt{a}}{\sqrt{a}+2}=2\)

               <=>\(3\sqrt{a}=2\sqrt{a}+4\)

                <=>\(\sqrt{a}=4\)

                <=>a=16

tick nha

 

28 tháng 12 2015

hiều rồi thì ra mình làm tới đoạn \(\frac{3a-6\sqrt{a}}{\left(\sqrt{a}+2\right)\cdot\left(\sqrt{a}-2\right)}\)
tưởng là hết rút được 

13 tháng 5 2021

1,

\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\left(đk:a\ne0;1;2;a\ge0\right)\)

\(=\frac{\left(a\sqrt{a}-1\right)\left(a+\sqrt{a}\right)-\left(a\sqrt{a}+1\right)\left(a-\sqrt{a}\right)}{a^2-a}.\frac{a-2}{a+2}\)

\(=\frac{a^2\sqrt{a}+a^2-a-\sqrt{a}-\left(a^2\sqrt{a}-a^2+a-\sqrt{a}\right)}{a\left(a-1\right)}.\frac{a-2}{a+2}\)

\(=\frac{2a\left(a-1\right)\left(a-2\right)}{a\left(a-1\right)\left(a+2\right)}=\frac{2\left(a-2\right)}{a+2}\)

Để \(A=1\)\(=>\frac{2a-4}{a+2}=1< =>2a-4-a-2=0< =>a=6\)

14 tháng 5 2021

2, 

a, Điều kiện xác định của phương trình là \(x\ne4;x\ge0\)

b, Ta có : \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)

\(=\frac{2\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}-\frac{\sqrt{x}-2}{x-4}\)

\(=\frac{2\sqrt{x}+2+2}{x-4}=\frac{2\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{2}{\sqrt{x}-2}\)

c, Với \(x=3+2\sqrt{3}\)thì \(B=\frac{2}{3-2+2\sqrt{3}}=\frac{2}{1+2\sqrt{3}}\)

Bài 2: 

\(\Leftrightarrow3\sqrt{x+5}-2\sqrt{x+5}=7\)

\(\Leftrightarrow\sqrt{x+5}=7\)

=>x+5=25

hay x=18

a: ĐKXĐ: \(x>0\)

b: Ta có: \(A=\dfrac{x^2+\sqrt{x}}{x-\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+1\)

\(=x+\sqrt{x}-2\sqrt{x}-1+1\)

\(=x-\sqrt{x}\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}\)

\(=2\sqrt{x}-1\)

14 tháng 12 2016

a)\(\hept{\begin{cases}a\ge0\\\sqrt{a}-2>0\Leftrightarrow\\\sqrt{a}+2>0\end{cases}a>4}\)

b)\(\frac{\sqrt{a}\left(\sqrt{a}+2\right)+\sqrt{a}\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}.\frac{a-4}{2\sqrt{a}}\)  \(=\frac{2a}{a-4}.\frac{a-4}{2\sqrt{a}}=\sqrt{a}\)

c)\(\sqrt{a}>3\Leftrightarrow a>9\)

14 tháng 12 2016

dsdsdsdsd

dsdsdsdsd

dsdsdssd

dsdsdssds

a: ĐKXĐ: x>0; x<>1

b: \(A=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2}{x-1}\)

c: A nguyên

=>x-1 thuộc {1;-1;2;-2}

=>x thuộc {2;3}

27 tháng 10 2020

a) đk: \(\hept{\begin{cases}a\ge0\\a\ne16\end{cases}}\)

Ta có: 

\(C=\frac{a}{a-16}-\frac{2}{\sqrt{a}-4}-\frac{2}{\sqrt{a}+4}\)

\(C=\frac{a-2\cdot\left(\sqrt{a}+4\right)-2\cdot\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(C=\frac{a-2\sqrt{a}-8-2\sqrt{a}+8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(C=\frac{a-4\sqrt{a}}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}=\frac{\sqrt{a}}{\sqrt{a}+4}\)

b) Ta có: \(a=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)

\(\Rightarrow\sqrt{a}=\sqrt{5}-2\)

Khi đó: \(C=\frac{\sqrt{5}-2}{\sqrt{5}-2+4}=\frac{\sqrt{5}-2}{\sqrt{5}+2}=\frac{\left(\sqrt{5}-2\right)^2}{1}=9-4\sqrt{5}\)

27 tháng 10 2020

\(C=\frac{a}{a-16}-\frac{2}{\sqrt{a}-4}-\frac{2}{\sqrt{a}+4}\)

a) ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne16\end{cases}}\)

\(=\frac{a}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}-\frac{2\left(\sqrt{a}+4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}-\frac{2\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(=\frac{a-2\sqrt{a}-8-2\sqrt{a}+8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(=\frac{a-4\sqrt{a}}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}=\frac{\sqrt{a}}{\sqrt{a}+4}\)

b) Với \(a=9-4\sqrt{5}\)( tmđk )

\(C=\frac{\sqrt{a}}{\sqrt{a}+4}=1-\frac{4}{\sqrt{a}+4}\)

\(C=1-\frac{4}{\sqrt{9-4\sqrt{5}}+4}\)

\(=1-\frac{4}{\sqrt{5-4\sqrt{5}+4}+4}\)

\(=1-\frac{4}{\sqrt{\left(\sqrt{5}-2\right)^2}+4}\)

\(=1-\frac{4}{\left|\sqrt{5}-2\right|+4}\)

\(=1-\frac{4}{\sqrt{5}-2+4}\)

\(=1-\frac{4}{\sqrt{5}+2}\)

\(=\frac{\sqrt{5}+2-4}{\sqrt{5}+2}\)

\(=\frac{\sqrt{5}-2}{\sqrt{5}+2}\)

\(=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}-2\right)}{1}=9-4\sqrt{5}\)