K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2023

Ta có: \(A=\dfrac{x}{\sqrt{y}}\) khi \(y=625\) và \(A< 0,2\)  

Nên: \(\dfrac{x}{\sqrt{625}}< 0,2\)

\(\Leftrightarrow\dfrac{x}{\sqrt{25^2}}< 0,2\)

\(\Leftrightarrow\dfrac{x}{25}< 0,2\)

\(\Leftrightarrow x< 0,2\cdot25\)

\(\Leftrightarrow x< 5\) 

Vậy khi \(y=625\) và \(A< 0,2\) khi và chỉ khi \(x< 5\)

15 tháng 6 2023

`1/P=(sqrtx+1)/(sqrtx-3)=(sqrtx-3+4)/(sqrtx-3)=1+4/(sqrtx-3)(x>=0,x\ne9)`

Để `1/P` max thì `4/(sqrtx-3)` max

Nhận thấy nếu `x<9` thì `sqrtx-3<0` hay `4/(sqrtx-3)<0`

Nếu `x>9` thì `4/(sqrtx-3)>0`

Do đó ta xét `x>9` hay `x>=10`

`=>sqrtx-3>=sqrt10-3`

`=>4/(sqrtx-3)<=4/(sqrt10-3)`

Hay `(1/P)_(max)=1+4/(sqrt10-3)<=>x=10`

29 tháng 12 2023

c: P=A:B

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)

=>\(P=\dfrac{\sqrt{x}-2+4}{\sqrt{x}-2}=1+\dfrac{4}{\sqrt{x}-2}\)

Để P lớn nhất thì \(\dfrac{4}{\sqrt{x}-2}\) lớn nhất

=>\(\sqrt{x}-2=1\)

=>\(\sqrt{x}=3\)

=>x=9(nhận)

a: Ta có: \(A=\left(\dfrac{x+\sqrt{x}+1}{x+\sqrt{x}-2}+\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}\right):\dfrac{1}{x-1}\)

\(=\dfrac{x+\sqrt{x}+1+\sqrt{x}+2+\sqrt{x}-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{1}\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}+1}{1}\)

\(=x+2\sqrt{x}+1\)

1 tháng 9 2021

câu b đâu ạ

 

NV
21 tháng 1 2021

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

NV
21 tháng 1 2021

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)