Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa: \(A=1+2^1+2^2+2^3+...+2^{2021}\)
\(\Rightarrow A+1=1+1+2+2^2+...+2^{2021}\\ \Rightarrow A+1=2+2+2^2+...+2^{2021}\\ \Rightarrow A+1=2^2+2^2+2^3+...+2^{2021}\\ \Rightarrow A+1=2^3+2^3+2^4+...+2^{2021}\\ ....\\ \Rightarrow A+1=2^{2021}+2^{2021}=2^{2022}\)
Mà \(2^x=A+1\Rightarrow2^x=2^{2022}\Rightarrow x=2022\)
\(A=1+2^1+2^1+2^2+...+2^{2021}\\ \Rightarrow A=1+2+2+2^2+...+2^{2021}\\ \Rightarrow A=1+2.2+2^2+...+2^{2021}\\ \Rightarrow A=1+2^2+2^2+...+2^{2021}\\ \Rightarrow A=1+2.2^2+...+2^{2021}\\ \Rightarrow A=1+2^3+...+2^{2021}\)
....
\(\Rightarrow A=1+2^{2022}\)
\(2^x=1+A\\ \Rightarrow2^x=1+1+2^{2022}\\ \Rightarrow2^x=2+2^{2022}\)
không phù hợp với lớp 6
a)7x-3.723=4.723
7x =4.723+3.723
7x =723.(4+3)
7x =723.7
7x = 724
=> x = 24
b)2.5x+1+3.521=522
2.5x+1 = 522-3.521
2.5x+1 = 521(5-3)
2.5x+1 =521.2
=>5x+1 = 521
=>x+1 = 21
x = 21 - 1
x = 20
ta có :
1/2=1/40+1/40+....+1/40 (20 số hạng)
1/21+1/22+1/23....+1/40(có 20 số hạng)
vì 1/21>1/40
1/22>1/40
..........
1/39>1/40
1/40=1/40
=>A<1/2
A<1 chịu
Ta có
\(\frac{1}{40}< \frac{1}{21}\\ \frac{1}{40}< \frac{1}{22}\\ ...\\ \frac{1}{40}< \frac{1}{39}\)
Mà số phần từ của A là 20
\(\Rightarrow\frac{1}{40}.20< A\Leftrightarrow\frac{1}{2}< A\)
Còn chứng minh bé hơn 1 thì tương tự bạn nhé!
2A=2*(1+2+22+...+22020)=2+22+...+22021
2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)
A=22021-1<2021
Giải:
A=1+2+22+23+...+22020
2A=2+22+23+24+...+22021
2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)
A=22021-1
⇒A<22021
Chúc bạn học tốt!
22/ a/ 0;-2;4;6;-6;-4..........
b/ 1;-1;3;5;
23/ a/ -21/28=-3/4;-39/52=-3/4
=> -21/28=-39/52
b/ -171717/232323=-17/23
=>.....
Số số hạng của biểu thức A là: (40-21):1+1=20(số hạng)
Ta có : 1/21>1/40,1/22>1/40,1/23>1/40,...,1/40=1/40
1/21+1/22+1/23+...+1/40>1/40+1/40+1/41+1/40+...+1/40( 20 số 1/40)
A>1/40x20=1/2
A>1/20 (1)
Lại có: 1/21=1/21,1/21>1/22,1/21>1/23,...,1/21>1/40
1/21+1/21+1/21+...+1/21(20 số 1/21)>1/21+1/22+1/23+...+1/40
1/21x20>A
20/21>A.Mà 1>20/21
1>A (2)
Từ (1) và (2) ta có : 1/2<A<1(đpcm)
Vậy bài tôán đđcm
\(\frac{1}{2}=\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\)có 20 số hạng \(\)
\(\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}\)có 20 số hạng
\(\frac{1}{21}>\frac{1}{40}\)
\(\frac{1}{22}>\frac{1}{40}\)
\(.....\)
\(\frac{1}{40}=\frac{1}{40}\)\(\Rightarrow\frac{1}{2}< \frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}\)
\(1=\frac{1}{40}+....+\frac{1}{40}\)có 40 số hạng mà A chỉ có 20 số hạng
\(\Rightarrow\frac{1}{2}< A< 1\)
Answer :
\(\Rightarrow A+1=1+1+2+2^2+...+2^{2021}\)
\(\Rightarrow A+1=2+2+2^2+...+2^{2021}\)
\(\Rightarrow A+1=2^2+2^2+2^3+...+2^{2021}\)
\(\Rightarrow A+1=2^3+2^3+2^4+...+2^{2021}\)
....
\(\Rightarrow A+1=2^{2021}+2^{2021}=2^{2022}\)
Mà \(2^x=A+1\Rightarrow2^x=2^{2022}\Rightarrow x=2022\)