Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Để P=3 thì \(\dfrac{x+1}{2x}=3\)
\(\Leftrightarrow x+1=6x\)
\(\Leftrightarrow x-6x=-1\)
\(\Leftrightarrow-5x=-1\)
hay \(x=\dfrac{1}{5}\)(thỏa ĐK)
Vậy: Để P=3 thì \(x=\dfrac{1}{5}\)
a) Ta có: \(A=\dfrac{1}{x^2+x}+\dfrac{1}{x+1}\)
\(=\dfrac{1}{x\left(x+1\right)}+\dfrac{x}{x\left(x+1\right)}\)
\(=\dfrac{x+1}{x\left(x+1\right)}=\dfrac{1}{x}\)
a) ĐKXĐ: \(x\notin\left\{0;3;1\right\}\)
Sửa đề: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
Ta có: \(A=\left(\dfrac{x-3}{x}-\dfrac{x}{x-3}+\dfrac{9}{x^2-3x}\right):\dfrac{2x-2}{x}\)
\(=\dfrac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6x+18}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-6\left(x-3\right)}{x\left(x-3\right)}\cdot\dfrac{x}{2\left(x-1\right)}\)
\(=\dfrac{-3}{x-1}\)
b) Để A nguyên thì \(-3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;-2;4\right\}\)