K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2023

A = |x + 1| + |y - 2| ≥ |x + 1 + y - 2|

= |x + y - 1|

= |2 - 1|

= 1

Vậy giá trị nhỏ nhất của A là 1

22 tháng 10 2023

\(A=\left|x+1\right|+\left|y-2\right|\)

\(\Rightarrow A\le x+1+y-2\)

\(A\le x+y-1\)

\(A\le4\)

Vậy giá trị nhỏ nhất biểu thức A là 4.

15 tháng 2 2016

|x-2001|+|x-1|=|x-2001|+|1-x|

BĐT gttđ:|a+b| > |a+b|

áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000

=>Amin=2000

dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000

6 tháng 11 2016

bài 2

Ta có:

\(A=\left|x-102\right|+\left|2-x\right|\Rightarrow A\ge\left|x-102+2-x\right|=-100\Rightarrow GTNNcủaAlà-100\)đạt được khi \(\left|x-102\right|.\left|2-x\right|=0\)

Trường hợp 1: \(x-102>0\Rightarrow x>102\)

\(2-x>0\Rightarrow x< 2\)

\(\Rightarrow102< x< 2\left(loại\right)\)

Trường hợp 2:\(x-102< 0\Rightarrow x< 102\)

\(2-x< 0\Rightarrow x>2\)

\(\Rightarrow2< x< 102\left(nhận\right)\)

Vậy GTNN của A là -100 đạt được khi 2<x<102.

6 tháng 11 2016

trị tuyệt đối phải bằng dương chứ sao bằng âm được

4 tháng 1 2017

bài dễ ợt mà làm ko đc

4 tháng 1 2017

Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)

=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)

Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)

Ta xét các trường hợp: 

TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)

TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)

TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)

Vậy (x;y;z) là các hoán vị của (1;2;3)

14 tháng 1 2016

Dể biểu thức E đạt giá trị nguyên thì 3-x chia hết cho x-1

suy ra x-1 thuộc Ư(2)=(-1;1;2;-2)

x-1=-1suy ra x=0

x-1=1 suy ra x=2

x-1=2suy ra x=3

x-1=-2 suy ra x=-1

5 tháng 4 2020

cho bieu thuc e =3 x/x -1.tim gia tri nguyen cua x de 

a,e co gia tri nguyen 

b,e co gia tri nho nhat

26 tháng 6 2016

\(A=\left|x-1\right|+\left|x-2\right|\)

  • x<1: \(A=1-x+2-x=3-2x>3-2\cdot1=1\)(1)
  • 1<= x < 2: \(A=x-1+2-x=1\)(2)
  • x>=2: \(A=x-1+x-2=2x-3\ge2\cdot2-3=1\). Dấu "=" khi x = 2. (3)

Từ (1); (2); (3) => GTNN của A bằng 1 khi \(1\le x\le2\)

26 tháng 6 2016

Ta có Ix-1I \(\ge\) 0  và Ix-2I \(\ge\) 0

=> A= Ix-1I + Ix-2I \(\ge\) 0

=> Giá trị nhỏ nhất của A=0 khi x-1=0 => x=1

a: Khi x=-2 thì \(M=3-\left(-2-1\right)^2=3-9=-6\)

Khi x=0 thì \(M=3-\left(0-1\right)^2=2\)

Khi x=3 thì \(M=3-\left(3-1\right)^2=3-2^2=-1\)

b: Để M=6 thì \(3-\left(x-1\right)^2=6\)

\(\Leftrightarrow\left(x-1\right)^2=-3\)(loại)

c: \(M=-\left(x-1\right)^2+3\le3\forall x\)

Dấu '=' xảy ra khi x=1

7 tháng 3 2022

a, Thay x=-2 vào M ta có:
\(M=3-\left(-2-1\right)^2=3-\left(-3\right)^2=3-9=-6\)

 Thay x=0 vào M ta có:
\(M=3-\left(0-1\right)^2=3-\left(-1\right)^2=3-1=2\)

 Thay x=3 vào M ta có:
\(M=3-\left(3-1\right)^2=3-2^2=3-4=-1\)

b, Để M=6 thì:

\(3-\left(x-1\right)^2=6\\ \Leftrightarrow\left(x-1\right)^2=-3\left(vô.lí\right)\)

c, Ta có: \(\left(x-1\right)^2\ge0\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

\(\Rightarrow M=3-\left(x-1\right)^2\le3\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

Vậy \(M_{max}=3\Leftrightarrow x=1\)