Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lụi đê ( lụi nhg đúng :D )
\(\sqrt{20+\sqrt{20+\sqrt{20+\sqrt{20+....+\sqrt{20}}}}}=A\)
\(20+\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}=A^2\)
20 + A = A2
GIẢI RA TÌM A
\(\sqrt{20+\sqrt{20+\sqrt{20+...+\sqrt{20}}}}\sqrt{20}>\sqrt{16}=4\)
\(\Rightarrow4
D=\(\sqrt{20+\sqrt{20+....+\sqrt{20+\sqrt{25}}}}\)= \(\sqrt{20+\sqrt{20+....+\sqrt{20+5}}}\)=\(\sqrt{20+\sqrt{20+....+\sqrt{25}}}\)
=............=\(\sqrt{20+\sqrt{25}}\)=\(\sqrt{20+5}=5\)
Vậy D=5
b. ĐK \(\hept{\begin{cases}x-2\ge0\\y+2014\ge0\\z-2015\ge o\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\y\ge-2014\\z\ge2015\end{cases}}}\)
Ta có \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{y+2014}=b\ge0\\\sqrt{z-2015}=c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=a^2\\y+2014=b^2\\z-2015=c^2\end{cases}\Rightarrow x+y+z}=a^2+b^2+c^2+3\)
Pt \(\Leftrightarrow a+b+c=\frac{1}{2}\left(a^2+b^2+c^2+3\right)\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)\(\Leftrightarrow a=b=c=1\)
\(\Rightarrow\hept{\begin{cases}x-2=1\\y+2014=1\\z-2015=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2013\\z=2016\end{cases}\left(tm\right)}}\)
Vậy \(x=3;y=-2013;z=2016\)
`a)(\sqrt{14}-3\sqrt{2})^2+6\sqrt{28}`
`=14-12\sqrt{7}+18+12\sqrt{7}=32`
`b)2\sqrt{20}-3\sqrt{20}+\sqrt{125}`
`=4\sqrt{5}-6\sqrt{5}+5\sqrt{5}`
`=3\sqrt{5}`.
a) \(\left(\sqrt{14}-3\sqrt{2}\right)^2-6\sqrt{28}\)
\(=\left(\sqrt{14}\right)^2-2\cdot\sqrt{14}\cdot3\sqrt{2}+\left(3\sqrt{2}\right)^2+6\sqrt{28}\)
\(=14-6\sqrt{28}+18+6\sqrt{28}\)
\(=14+18\)
\(=32\)
b) \(2\sqrt{20}-3\sqrt{20}+\sqrt{125}\)
\(=2\cdot2\sqrt{5}-3\cdot2\sqrt{5}+5\sqrt{5}\)
\(=4\sqrt{5}-6\sqrt{5}+5\sqrt{5}\)
\(=3\sqrt{5}\)
- Ta có:\(T=\sqrt{20+\sqrt{20+...+\sqrt{20}}}+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}>\sqrt{20}+\sqrt[3]{24}>7\)(1)
- Mặt khác:
\(\sqrt{20+\sqrt{20+...+\sqrt{20}}}< \sqrt{20+\sqrt{20+...+\sqrt{20+\sqrt{25}}}}=5\)
- Và:
\(\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}< \sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24+\sqrt[3]{27}}}}=3\)
- Nên \(T=\sqrt{20+\sqrt{20+...+\sqrt{20}}}+\sqrt[3]{24+\sqrt[3]{24+...+\sqrt[3]{24}}}< 8\)(2).
- Từ (1) và (2), ta có: \(7< T< 8\)đpcm
Số này lớn hơn 4 và nhỏ hơn 5 thôi, (rất gần 5)
Tính thế nào được A.