Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)
Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)
\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Ta có :
+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)
+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)
Vậy...
b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)
Ta có :
\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)
\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)
\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n
Vậy...
a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)
\(A=\dfrac{n+1}{n-3}\)
\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)
\(A=1+\dfrac{4}{n-3}\)
Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n-3=1 --> n=4
n-3=-1 --> n=2
n-3=2 --> n=5
n-3=-2 --> n=1
n-3=4 --> n=7
n-3=-4 --> n=-1
Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên
b.hemm bt lèm:vv
\(A=\frac{3n-2}{n-1}=\frac{3n-3+2}{n-1}=\frac{3.\left(n-1\right)+1}{n-1}=3+\frac{1}{n-1}\)
Để A là số nguyên thì n - 1 là ước nguyên của 1
\(n-1=1\Rightarrow n=2\)
\(n-1=-1\Rightarrow n=0\)
Ai thấy đúng thì ủng hộ nha !!!
Ta có A= 3n-2/ n-1 = 3n-3+1/ n-1 = 3(n-1)/n-1 + 1/n-1 = 3+ 1/n-1
để A thuộc Z = > 3 + 1/n-1 thuộc z => 1/n-1 thuộc Z => 1 chia hết cho n-1 => (n-1) thuộc Ư(1)
=> n-1 thuộc {-1;1}
=> n thuộc {0; 2}
10 chia hết cho n-2 => n -2 E Ư(10) cò n lại tự tí nh ha
a)Ta có:6n-1/2n+2=6n+4-5/3n+2=6n+4/3n+2-5/3n+2=2-5/3n+2
Ta thấy 2 là số nguyên vậy 5/3n-2 phải là số nguyên để 6n-1/3n+2 là số nguyên
3n-2 là Ư(5)={-1;1-5;5}
Với 3n-2=-1 suy ra 3n=-1+2=1 suy ra n=0,3..333(không thỏa mãn điều kiện số nguyên)
...............1............3n=1+2=3 ...........n=1(thỏa mãn điều kiện)
...............-5...........3n=-5+1=4............n=1,33..3(không t/m đ/k số nguyên)
...............5..............3n=5+1=5............n=2(t/m đ/k số nguyên)
Vậy n=1;2
Ta có:\(A=\frac{3n-5}{n+1}=\frac{3\left(n+1\right)-8}{n+1}=3-\frac{8}{n+2}\)
Để A nguyên thì 8 chia hết cho n+1
Hay \(n+1\inƯ\left(8\right)\)
Vậy Ư(8) là:[1,-1,2,-2,4,-4,8,-8]
Do đó ta được bảng sau:
n+1 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -9 | -5 | -3 | -2 | 0 | 1 | 3 | 7 |
Vậy Để A nguyên x thỏa mãn:[-9;-5;-3;-2;0;1;3;7]
Để A nguyên thì 3n+3-1 chia hết cho n+1
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)