Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\dfrac{3}{1\cdot2\cdot3}+\dfrac{3}{2\cdot3\cdot4}+...+\dfrac{3}{2015\cdot2016\cdot2017}\)
Nhận xét:\(\dfrac{1}{\left(n-1\right)n}-\dfrac{1}{n\left(n+1\right)}=\dfrac{n+1-n+1}{\left(n-1\right)n\left(n+1\right)}=\dfrac{2}{\left(n-1\right)n\left(n+1\right)}\)
=>A=\(3\cdot\dfrac{1}{2}\cdot\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{2015\cdot2016}-\dfrac{1}{2016\cdot2017}\right)=\dfrac{3}{2}\cdot\left(\dfrac{1}{2}-\dfrac{1}{2016\cdot2017}\right)=\dfrac{3}{4}-\dfrac{3}{2.2016.2017}< \dfrac{3}{4}< 1\)
Vậy A<1
\(\frac{B}{A}=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{\left(\frac{2016}{1}+1\right)+\left(\frac{2015}{2}+1\right)+...+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{\frac{2017}{1}+\frac{2017}{2}+...+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(\frac{B}{A}=\frac{2017\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}}=2017\div\frac{1}{2017}=4068289\)
Mk ko bt t mình nhé mk mới giam gia thôi
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2015.2016.2017}\)
\(A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2017-2015}{2015.2016.2017}\)
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2015.2016}-\frac{1}{2016.2017}\)
\(2A=\frac{1}{1.2}-\frac{1}{2016.2017}\)
\(A=\left(\frac{1}{1.2}-\frac{1}{2016.2017}\right)\div2\)