Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{a+c-b}{ac}=0\)
\(\frac{a}{ab}+\frac{b}{ab}-\frac{c}{ab}-\frac{b}{bc}-\frac{c}{cb}+\frac{a}{bc}-\frac{a}{ac}-\frac{c}{ac}+\frac{b}{ac}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}-\frac{c}{ab}-\frac{1}{c}-\frac{1}{b}+\frac{a}{bc}-\frac{1}{c}-\frac{1}{a}+\frac{b}{ac}\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ac}-\frac{2}{c}-\frac{c}{ab}\)
\(\Rightarrow\frac{a^2}{abc}+\frac{b^2}{abc}-\frac{c^2}{abc}-\frac{2ab}{abc}\)
\(\Rightarrow\frac{a^2-2ab+b^2-c^2}{abc}\)
\(\Rightarrow\frac{\left(a-b\right)^2-c^2}{abc}\Rightarrow\frac{\left(a-b-c\right)\left(a-b+c\right)}{abc}\)
Đến đây mk tắc thông cảm nha
ta có :
\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\Leftrightarrow ac+bc-c^2-\left(ab+ac-a^2\right)-\left(bc+ab-b^2\right)=0\)
\(\Leftrightarrow a^2-2ab+b^2-c^2=0\Leftrightarrow\left(a-b\right)^2-c^2=0\)
\(\Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)=0\Leftrightarrow\orbr{\begin{cases}\frac{a-b+c}{ca}=0\\\frac{b+c-a}{bc}=0\end{cases}}\)
Vậy ta có đpcm
\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{c+a-b}{ca}=0\)
=> \(\frac{ca+cb-c^2-ab-ac+a^2-bc-ab+b^2}{abc}=0\)
=> a2 + b2 - 2ab - c2 = 0
=> (a - b)2 - c2 = 0
<=> (a - b + c)(a - b - c) = 0
<=> \(\orbr{\begin{cases}a-b+c=0\\a-b-c=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a+c=b\\a=b+c\end{cases}}\)
Khi a + c = b => \(\frac{c+a-b}{ca}=\frac{b-b}{ca}=0\)
Khi a = b + c => \(\frac{b+c-a}{bc}=\frac{a-a}{bc}=0\)
=> đpcm
Thay a+b+c=2017 vào \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\) ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)\(\Rightarrow\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{c\left(b+c\right)+ca+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+ca+ab\right]=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+a\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\)\(a+b=0\) hoặc \(b+c=0\) hoặc \(c+a=0\)
\(\Rightarrow\)\(c=2017\)hoặc \(a=2017\) hoặc \(b=2017\left(đpcm\right)\)
2, (trích đề thi học sinh giỏi Bến Tre-1993)
\(a^3+a^2b+ca^2+b^3+ab^2+b^2c+c^3+c^2b+c^2a=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
mà a+b+c=0 => (a+b+c)(a2+b2+c2)=0
=> đpcm
*bài này tui làm tắt, không hiểu ib
Vừa lm xog bị troll chứ, tuk quá
\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)
\(\Leftrightarrow\frac{x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{a^2x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{b^2\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}+\frac{a\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}=\frac{x^2\left(b^2-x^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}\)
Khử mẫu :
\(\Leftrightarrow2x^3b^2-xb^4-x^5-2a^2x^3b^2+a^2xb^4+a^2x^5-b^2x^2+b^4+2ab^2x^2-ab^4-ax^4=x^2b^2-x^4\)
Tự xử nốt, lm bài này muốn phát điên mất.
theo bất đẳng thức côsi ta có :
\(\left(a+b\right)^2\ge4ab\)
\(\left(b+c\right)^2\ge4bc\)
\(\left(c+a\right)^2\ge4ca\)
\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\ge64a^2b^2c^2\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
\(a,b,c\ne0\)
\(\dfrac{ac+bc-c^2}{abc}-\dfrac{ab+ac-a^2}{abc}-\dfrac{ab+bc-b^2}{abc}=0\)
\(\Leftrightarrow\dfrac{ac+bc-c^2-ab-ac+a^2-ab-bc+b^2}{abc}=0\)
\(\Leftrightarrow a^2+b^2-c^2-2ab=0\)
\(\Leftrightarrow\left(a-b\right)^2-c^2=0\)
\(\Leftrightarrow\left(a-b-c\right)\left(a-b+c\right)=0\)
\(\Leftrightarrow\left(b+c-a\right)\left(a+c-b\right)=0\) \(\Rightarrow\left[{}\begin{matrix}b+c-a=0\\a+c-b=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{b+c-a}{bc}=0\\\dfrac{a+c-b}{ac}=0\end{matrix}\right.\) (đpcm)