Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a+b-c}{ab}-\frac{b+c-a}{bc}-\frac{a+c-b}{ac}=0\)
\(\frac{a}{ab}+\frac{b}{ab}-\frac{c}{ab}-\frac{b}{bc}-\frac{c}{cb}+\frac{a}{bc}-\frac{a}{ac}-\frac{c}{ac}+\frac{b}{ac}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}-\frac{c}{ab}-\frac{1}{c}-\frac{1}{b}+\frac{a}{bc}-\frac{1}{c}-\frac{1}{a}+\frac{b}{ac}\)
\(\Rightarrow\frac{a}{bc}+\frac{b}{ac}-\frac{2}{c}-\frac{c}{ab}\)
\(\Rightarrow\frac{a^2}{abc}+\frac{b^2}{abc}-\frac{c^2}{abc}-\frac{2ab}{abc}\)
\(\Rightarrow\frac{a^2-2ab+b^2-c^2}{abc}\)
\(\Rightarrow\frac{\left(a-b\right)^2-c^2}{abc}\Rightarrow\frac{\left(a-b-c\right)\left(a-b+c\right)}{abc}\)
Đến đây mk tắc thông cảm nha
giải giúp mình với, mình gấp lắm,mai phải nộp rồi(1like nha)
-C/m bằng phép biến đổi tương đương:
\(\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ac}{b}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2b^2+b^2c^2+a^2c^2}{abc}\ge a+b+c\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge a^2bc+ab^2c+abc^2\)
\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2-2a^2bc-2ab^2c-2abc^2\ge0\)
\(\Leftrightarrow a^2\left(b^2-2bc+c^2\right)+b^2\left(c^2-2ca+a^2\right)+c^2\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow a^2\left(b-c\right)^2+b^2\left(c-a\right)^2+c^2\left(a-b\right)^2\ge0\) (luôn đúng)
-Dấu "=" xảy ra khi \(a=b=c\)
\(a,b,c\ne0\)
\(\dfrac{ac+bc-c^2}{abc}-\dfrac{ab+ac-a^2}{abc}-\dfrac{ab+bc-b^2}{abc}=0\)
\(\Leftrightarrow\dfrac{ac+bc-c^2-ab-ac+a^2-ab-bc+b^2}{abc}=0\)
\(\Leftrightarrow a^2+b^2-c^2-2ab=0\)
\(\Leftrightarrow\left(a-b\right)^2-c^2=0\)
\(\Leftrightarrow\left(a-b-c\right)\left(a-b+c\right)=0\)
\(\Leftrightarrow\left(b+c-a\right)\left(a+c-b\right)=0\) \(\Rightarrow\left[{}\begin{matrix}b+c-a=0\\a+c-b=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{b+c-a}{bc}=0\\\dfrac{a+c-b}{ac}=0\end{matrix}\right.\) (đpcm)