Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo giả thiết => a-c=\(2\sqrt{2}\)
ta có: \(2\cdot A=2\left(a^2+b^2+c^2-ab-bc-ca\right)\)
=\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
=\(\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}-1\right)^2+8\)
=14
=> A=7
\(\left\{{}\begin{matrix}a-b=\sqrt{2}+1\\b-c=\sqrt{2}-1\end{matrix}\right.\Rightarrow a-c=2\sqrt{2}\)
\(A=a^2+b^2+c^2-ab-bc-ca\)
\(2A=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)
\(=\left(\sqrt{2}+1\right)^2+\left(\sqrt{2}-1\right)^2+\left(2\sqrt{2}\right)^2\)
\(=2+2\sqrt{2}+1+2-2\sqrt{2}+1+8\)
\(=14\)
Vậy \(A=7\)
Ta có : \(a^2+b^2+c^2=ab+bc+ca\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ac+a^2=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
\(T=\frac{a^{2021}+b^{2021}+c^{2021}}{\left(a+b+c\right)^{2021}}=\frac{b^{2021}+b^{2021}+b^{2021}}{\left(b+b+b\right)^{2021}}=\frac{3b^{2021}}{\left(3b\right)^{2021}}=\frac{3}{3^{2021}}=\frac{1}{3^{2020}}\)
Dat \(\left(\frac{a}{b};\frac{b}{c};\frac{c}{a}\right)=\left(x;y;z\right)\)
\(\Rightarrow xyz=1\)
\(\Sigma_{cyc}\frac{1}{\frac{a}{b}+\frac{c}{a}+1}=\Sigma_{cyc}\frac{1}{x+y+1}\)
We need to prove:
\(\Sigma_{cyc}\frac{1}{x+y+1}\le1\)
\(\Leftrightarrow\Sigma_{cyc}\frac{x+y}{x+y+1}\ge2\left(M\right)\)
We have:
\(VT_M\ge\frac{\left(\Sigma_{cyc}\sqrt{x+y}\right)^2}{2\Sigma_{cyc}x+3}\)
Now we need to prove
\(\frac{\left(\Sigma_{cyc}\sqrt{x+y}\right)^2}{2\Sigma_{cyc}x+3}\ge2\)
\(\Leftrightarrow\Sigma_{cyc}\sqrt{\left(x+y\right)\left(y+z\right)}\ge\Sigma_{cyc}x+3\left(M_1\right)\)
Consider:
\(VT_{M_1}=\sqrt{\left(x+y\right)\left(y+z\right)}\ge x+y+z+xy+yz+zx\)
Now we need to prove:
\(x+y+z+xy+yz+zx\ge x+y+z+3\)
\(xy+yz+zx\ge3\) (Not fail with xyz=1)
Dau '=' xay ra khi \(\hept{\begin{cases}a=b=c=1\\x=y=z=1\end{cases}}\)
Cần chứng minh: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)\)
Thật vậy: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)^2\Leftrightarrow4\left(a^2-ab+b^2\right)\ge\left(a+b\right)^2\)
\(\Leftrightarrow4a^2-4ab+4b^2-a^2-b^2-2ab\ge0\Leftrightarrow3\left(a^2+b^2-2ab\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)
Áp dụng:\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)
\(\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(c+a\right)}=2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=3\)
Dấu "=" xảy ra khi: \(a=b=c=1\)
\(a,M=6+\frac{2x}{x^2+1}\)
ÁP dụng bđt AM-GM ta có
\(M\le6+\frac{2x}{2x}=7\)
Dấu "=" xảy ra khi x=1
b,\(A=\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
\(=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ca}\ge\frac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)(bđt Cauchy-Schwarz)
mà \(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow A\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Dấu "=" xảy ra khi a=b=c
Theo nguyên lý diriclet ta có
Trong 3 số (a-1);(b-1);(c-1) luôn có hai số cùng dấu
Giả sử (a-1);(b-1) cùng dấu
=> \(c\left(a-1\right)\left(b-1\right)\ge0\)
=> \(abc\ge ac+bc-c\)
Lại có \(a^2+b^2\ge2ab\)
\(c^2+1\ge2c\)
Khi đó
\(P\ge2ab+2c-1+2\left(ac+bc-c\right)+\frac{18}{ab+bc+ac}\)
=> \(P\ge2\left(ab+bc+ac\right)+\frac{18}{ab+bc+ac}-1\ge2\sqrt{2.18}-1=11\)
Vậy \(MinP=11\)khii a=b=c=1
Áp dụng BĐT Cauchy ta được \(2\sqrt{bc}\le b+c\)=> \(\frac{a^2}{a+\sqrt{bc}}\ge\frac{2a^2}{2a+b+c}\)
Áp dụng BĐT tương tự ta được đẳng thức
\(\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\ge\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+c+a}+\frac{2c^2}{2c+a+b}\)
Áp dụng BĐT Cauchy ta lại có
\(\frac{2a^2}{2a+b+c}+\frac{2a+b+c}{8}\ge a;\frac{2b^2}{2b+a+c}+\frac{2b+a+c}{8}\ge b;\frac{2c^2}{2c+a+b}+\frac{2c+a+b}{8}\ge c\)
Cộng theo vế ta được
\(\frac{2a^2}{2a+b+c}+\frac{2b^2}{2b+a+c}+\frac{2c^2}{2c+a+b}\ge\frac{3}{2}\)
Vậy MinP=\(\frac{3}{2}\)
\(M=a^2+b^2+c^2-ab-bc-ca\)
\(=a\left(a-b\right)+b\left(b-c\right)+c\left(c-a\right)=2010a+2011b-4021c\)
\(=2010\left(a-c\right)+2011\left(b-c\right)=4021.2010+2011.2011\)
c - a ?
giải thích giúp mình với