K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

\(B=\frac{1}{1.1.3}+\frac{1}{2.3.5}+\frac{1}{3.5.7}+\frac{1}{4.7.9}+...+\frac{1}{100.199.201}\)

\(\frac{1}{1.1.3}+\frac{2}{2.3.5}+\frac{3}{3.5.7}+\frac{4}{4.7.9}+...+\frac{100}{100.199.201}\)

\(=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{199.201}\)

\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{199.201}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{199}-\frac{1}{201}\right)\)

\(=\frac{1}{2}\left(1-\frac{1}{201}\right)=\frac{1}{2}.\frac{200}{201}=\frac{100}{201}< \frac{1}{2}< \frac{2}{3}\)

=> B < 2/3

27 tháng 9 2019

\(A=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)

\(A< \frac{1}{100\cdot101}+\frac{1}{101\cdot102}+\frac{1}{102\cdot103}+\frac{1}{103\cdot104}+\frac{1}{104\cdot105}\)

\(=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)

\(=\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{2^2\cdot3\cdot5^2\cdot7}=B\)

Vậy \(A< B\)

4 tháng 1 2016

\(B=\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}<\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{103.104}\)

Tính VP ra là được 

4 tháng 1 2016

A<1/100.101+1/101.102+..+1/104.105

=> A<1/100-1/105=1/2100

Ma B=1/2100

=> A<B

1 tháng 1 2020

Ta có: \(A=\frac{1}{101^2}+\frac{1}{102^2}+......\frac{1}{105^2};\frac{1}{2^2.3.5^2.7}\)

\(A>\frac{1}{\left(101.101\right)}+\frac{1}{\left(101.102\right)}+\frac{1}{\left(102.103\right)}+......\frac{1}{\left(104.105\right)}\)

Ta thấy mỗi mẫu đều < thì => sẽ lớn hơn

\(A>\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+........\)

\(A>\frac{1}{100}-\frac{1}{105}=\frac{1}{2100}=\frac{1}{\left(2^2.3.5^2.7\right)}=B\)

=> gọi vế \(\frac{1}{\left(2^2.2.5^2.7\right)}\) là B

=> A>B

1 tháng 1 2020

\(\text{Ta có :}\)\(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{100.101}+\frac{1}{101.102}+.....+\frac{1}{105.106}\)

                \(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+....+\frac{1}{105}-\frac{1}{106}\)\

               \(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{100}-\frac{1}{105}\)

              \(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{2100}\)

             \(\text{Mà :}\)\(\frac{1}{2100}=\frac{1}{2^2.3.5^2.7}\)

             \(\text{Nên:}\)\(A=\frac{1}{101^2}+\frac{1}{102^2}+....+\frac{1}{105^2}< \)\(\frac{1}{2^2.3.5^2.7}\)

         

27 tháng 8 2019

\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+\frac{20}{5.7.9}+...+\frac{20}{25.27.29}\)

\(=5.\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(=5.\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(=5.\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)

\(=5.\left(\frac{1}{3}-\frac{1}{783}\right)\)

\(=5.\frac{260}{783}\)

\(=\frac{1300}{783}\)

Ta có:\(\frac{1}{\left(n-2\right)n}-\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)-\left(n-2\right)n}{\left(n-2\right)n\cdot n\left(n+2\right)}\)

                         \(=\frac{n\left(n+2-n+2\right)}{n\cdot\left(n-2\right)n\left(n+2\right)}=\frac{4}{\left(n-2\right)n\left(n+2\right)}\)

Áp dụng\(\frac{20}{1.3.5}+\frac{20}{3.5.7}+...+\frac{20}{25.27.29}\)

     \(=5\left(\frac{4}{1.3.5}+\frac{4}{3.5.7}+\frac{4}{5.7.9}+...+\frac{4}{25.27.29}\right)\)

\(=5\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+\frac{1}{5.7}-\frac{1}{7.9}+...+\frac{1}{25.27}-\frac{1}{27.29}\right)\)

\(=5\left(\frac{1}{1.3}-\frac{1}{27.29}\right)\)

\(=5\cdot\frac{261-1}{783}=5\cdot\frac{260}{783}=\frac{1300}{783}\)

11 tháng 9 2016

\(\frac{1}{101^2}+\frac{1}{102^2}+\frac{1}{103^2}+\frac{1}{104^2}+\frac{1}{105^2}\)

\(< \frac{1}{100.101}+\frac{1}{101.102}+\frac{1}{102.103}+\frac{1}{103.104}+\frac{1}{104.105}\)

\(< \frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+\frac{1}{103}-\frac{1}{104}+\frac{1}{104}-\frac{1}{105}\)

\(< \frac{1}{100}-\frac{1}{105}=\frac{1}{2100}\)

\(< \frac{1}{2^2.3.5^2.7}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right) = \frac{9}{{12}} + \left( {\frac{6}{{12}} - \frac{4}{{12}}} \right) = \frac{9}{{12}} + \frac{2}{{12}} = \frac{{11}}{{12}}\)

\(\frac{3}{4} + \frac{1}{2} - \frac{1}{3} = \frac{9}{{12}} + \frac{6}{{12}} - \frac{4}{{12}} = \frac{{15}}{{12}} - \frac{4}{{12}} = \frac{{11}}{{12}}\)

Vậy \(\frac{3}{4} + \left( {\frac{1}{2} - \frac{1}{3}} \right)\) = \(\frac{3}{4} + \frac{1}{2} - \frac{1}{3}\)    

b)\(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right) = \frac{4}{6} - \left( {\frac{3}{6} + \frac{2}{6}} \right) = \frac{4}{6} - \frac{5}{6} = \frac{{ - 1}}{6}\)

 \(\frac{2}{3} - \frac{1}{2} - \frac{1}{3} = \frac{4}{6} - \frac{3}{6} - \frac{2}{6} = \frac{1}{6} - \frac{2}{6} = \frac{{ - 1}}{6}\)

Vậy \(\frac{2}{3} - \left( {\frac{1}{2} + \frac{1}{3}} \right)\)=\(\frac{2}{3} - \frac{1}{2} - \frac{1}{3}\).

`#3107`

`a)`

`3/4 + (1/2 - 1/3)`

`= 3/4 + (3/6 - 2/6)`

`= 3/4 + 1/6`

`= 11/12`

 

`3/4 + 1/2 - 1/3`

`= 9/12 + 6/12 - 4/12`

`= (9 + 6 - 4)/12`

`= 11/12`

Vì `11/12 = 11/12`

`=> 3/4 + (1/2 - 1/3) = 3/4 + 1/2 - 1/3`

`b)`

`2/3 - (1/2 + 1/3)`

`= 2/3 - (3/6 + 2/6)`

`= 2/3 - 5/6`

`= -1/6`

 

`2/3 - 1/2 - 1/3`

`= 4/6 - 3/6 - 2/6`

`= (4 - 3 - 2)/6`

`= -1/6`

Vì `-1/6 = -1/6`

`=> 2/3 - (1/2 + 1/3) = 2/3 - 1/2 - 1/3`

AH
Akai Haruma
Giáo viên
6 tháng 7

Lời giải:

$A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}$

$3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}$

$\Rightarrow 3A-A=1-\frac{1}{3^{100}}$

$\Rightarrow 2A=1-\frac{1}{3^{100}}<1$

$\Rightarrow A< \frac{1}{2}$

$\Rightarrow A< B$