K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2018

ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b++c\right)}=\frac{1}{2}\)

Vậy giá trị mỗi tỉ số là \(\frac{1}{2}\)

1 tháng 7 2018

ta có \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

vì =>\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)