Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay xyz = 2011 vào N được :
\(N=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}=\frac{xy.xz}{xy\left(z+xz+1\right)}+\frac{y}{y\left(z+xz+1\right)}+\frac{z}{z+xz+1}\)
\(=\frac{xz}{z+xz+1}+\frac{1}{z+xz+1}+\frac{z}{z+xz+1}=\frac{z+xz+1}{z+xz+1}=1\)
với xyz=2009, thay vào, ta có
\(A=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)
=\(\frac{xz}{1+zx+y}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}=1\)
=> ... k phụ thuộc vào x,y,z(ĐPCM)
^_^
\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{zx+z+1}=\frac{1}{xy+x+1}+\frac{x}{xyz+xy+x}+\frac{xyz}{xz+z+xyz}\)
\(=\frac{1}{xy+x+1}+\frac{x}{1+xy+x}+\frac{xy}{x+1+xy}=\frac{1+x+xy}{xy+x+1}=1\)
Bạn thay y xyz=2010 vào A ta được
A= xyz*x/xy+xyz*x+xyz + y/yz+y+xyz + z/xz+z+1
suy ra A=x^2yz/xy(1+xz+z) + y/y(z+1+xz) + z/xz+x+1
A= xz/1+xz+z + 1/z+1+xz + x/xz+z+1 = xz+1+x/xz+1+x =1
Vay A=1
Từ dữ kiện đề bài => x + y + z = xyz
Ta có :
\(\frac{x}{\sqrt{yz\left(1+x^2\right)}}=\frac{x}{\sqrt{yz+xyz.x}}=\frac{x}{\sqrt{yz+x\left(x+y+z\right)}}=\frac{x}{\sqrt{\left(x+z\right)\left(x+y\right)}}\)
\(=\frac{\sqrt{x}}{\sqrt{x+z}}.\frac{\sqrt{x}}{\sqrt{x+y}}\le\frac{1}{2}.\left(\frac{x}{x+z}+\frac{x}{x+y}\right)\)
Tương tự với hai hạng tử còn lại , suy ra
\(Q\le\frac{1}{2}\left(\frac{x}{x+z}+\frac{x}{x+y}\right)+\frac{1}{2}\left(\frac{y}{x+y}+\frac{y}{y+z}\right)+\frac{1}{2}\left(\frac{z}{z+x}+\frac{z}{z+y}\right)=\frac{3}{2}\)
Vậy Max = 3/2 <=> x = y = z
Nguồn : Đinh Đức Hùng
\(M=\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}\)
\(M=\frac{xyz}{x\left(1+y+yz\right)}+\frac{1}{1+y+yz}+\frac{y}{y+yz+xyz}\)
\(M=\frac{yz}{1+y+yz}+\frac{1}{1+y+yz}+\frac{y}{y+yz+1}\)
\(M=\frac{yz+y+1}{1+y+yz}\)
Tham khảo nhé~