Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2xy+2x-5z=0\Leftrightarrow z=\frac{2xy+2x}{5}\)
Sau đấy bn thay z vào là ra
Ta có: \(2xy+2x-5z=0\Rightarrow z=\frac{2xy+2x}{5}\)
Thay \(z=\frac{2xy+2x}{5}\)vào A, ta được: \(A=x^2+2y^2+2xy+\frac{8}{5}y+\frac{2xy+2x}{5}+2=x^2+2y^2+\frac{12}{5}xy+\frac{8}{5}y+\frac{2}{5}x+2\)\(=\left(x^2+\frac{12}{5}xy+\frac{36}{25}y^2\right)+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}+\left(\frac{14}{25}y^2+\frac{28}{25}y+\frac{14}{25}\right)+\frac{7}{5}\)\(=\left[\left(x+\frac{6}{5}y\right)^2+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}\right]+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\)\(=\left(x+\frac{6}{5}y+\frac{1}{5}\right)^2+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\ge\frac{7}{5}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x+\frac{6}{5}y+\frac{1}{5}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\Rightarrow z=0\)
\(x^2-2xy+2y^2+5z^2+4yz-4z+4=0\)
\(\Leftrightarrow x^2-2xy+y^2+y^2+4yz+4z^2+z^2-4z+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+2z\right)^2+\left(z-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y+2z=0\\z-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=-4\\z=2\end{cases}}\)
\(2xy+2x-5z=0\Rightarrow5z=2xy+2x\Rightarrow z=\frac{2}{5}xy+\frac{2}{5}x\)
\(A=x^2+2y^2+2xy+\frac{8}{5}y+z+2\)
\(A=x^2+2y^2+2xy+\frac{8}{5}y+\frac{2}{5}xy+\frac{2}{5}x+2\)
\(A=x^2+2y^2+\frac{12}{5}xy+\frac{2}{5}x+\frac{8}{5}y+2\)
\(A=x^2+\left(\frac{6y}{5}\right)^2+\left(\frac{1}{5}\right)^2+2.\frac{6}{5}xy+\frac{2}{5}x+\frac{12y}{25}+\frac{14}{25}y^2+\frac{28y}{25}+\frac{14}{25}+\frac{7}{5}\)
\(A=\left(x+\frac{6y}{5}+\frac{1}{5}\right)^2+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\ge\frac{7}{5}\)
\(\Rightarrow A_{min}=\frac{7}{5}\) khi \(\left\{{}\begin{matrix}x=1\\y=-1\\z=0\end{matrix}\right.\)
Chân thành cám ơn bạn nhiều lắm