K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Cho ba số thực a,b,c dương

Áp dụng BĐT Cauchy Schwarz, ta được:

\(VT=\left(a+b+c\right)\left(\frac{9}{bc}+\frac{25}{c+a}+\frac{64}{a+b}\right)-98\ge\left(a+b+c\right)\left(\frac{256}{2\left(a+b+c\right)}\right)-98=30\)

\(\Leftrightarrow VT\ge30\)

Dấu '=' xảy ra khi \(\frac{8}{a+b}=\frac{5}{c+a}=\frac{3}{b+c}\)

\(\Leftrightarrow\frac{8}{a+b}=\frac{8}{a+b+2c}\)

hay c=0(vô lý)

=> Dấu bằng không xảy ra

=>ĐPCM

20 tháng 1 2021

Đặt \(\hept{\begin{cases}b+c=x>0\\c+a=y>0\\a+b=z>0\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{y+z-x}{2}\\b=\frac{z+x-y}{2}\\x=\frac{x+y-z}{2}\end{cases}}\)

Bất đẳng thức cần chứng minh tương đương:

\(\frac{9\left(y+z-x\right)}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{64\left(x+y-z\right)}{2z}>30\)

Ta có: \(VP=\frac{9y}{2x}+\frac{9z}{2x}-\frac{9}{2}+\frac{25z}{2y}+\frac{25x}{2y}-\frac{9}{2}+\frac{32x}{z}+\frac{32y}{z}-32\)

\(=\left(\frac{9y}{2x}+\frac{25x}{2y}\right)+\left(\frac{9z}{2x}+\frac{32x}{z}\right)+\left(\frac{25z}{2y}+\frac{32y}{z}\right)-41\)

\(\ge2\cdot\frac{15}{2}+2\cdot12+2\cdot20-41=38>30\)

\(\Rightarrow\frac{9a}{b+c}+\frac{25b}{c+a}+\frac{64c}{a+b}>30\)

18 tháng 11 2019

Violympic toán 9

20 tháng 1 2021

Đặt \(\left(b+c,c+a,a+b\right)\rightarrow\left(x,y,z\right)\)thì \(x,y,z>0\)và \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)

Bất đẳng thức cần chứng minh trở thành: \(\frac{y+z-x}{2x}+\frac{25\left(z+x-y\right)}{2y}+\frac{4\left(x+y-z\right)}{2z}>2\)

Xét \(VT=\left(\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}\right)+\left(\frac{25z}{2y}+\frac{25x}{2y}-\frac{25}{2}\right)+\left(\frac{2x}{z}+\frac{2y}{z}-2\right)\)\(=\left(\frac{y}{2x}+\frac{25x}{2y}\right)+\left(\frac{25z}{2y}+\frac{2y}{z}\right)+\left(\frac{z}{2x}+\frac{2x}{z}\right)-15\)\(\ge2\sqrt{\frac{y}{2x}.\frac{25x}{2y}}+2\sqrt{\frac{25z}{2y}.\frac{2y}{z}}+2\sqrt{\frac{z}{2x}.\frac{2x}{z}}-15=2\)(BĐT Cauchy)

Đẳng thức xảy ra khi \(10x=2y=5z\)hay \(10\left(b+c\right)=2\left(c+a\right)=5\left(a+b\right)\)\(\Rightarrow\hept{\begin{cases}10b+8c=2a\\5b+10c=5a\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=10b+8c\\2a=2b+4c\end{cases}}\Leftrightarrow8b+4c=0\)(Vô lí vì 8b + 4c > 0 với mọi b,c dương)

Vậy dấu bằng không xảy ra

20 tháng 1 2021

em chao chi a

AH
Akai Haruma
Giáo viên
31 tháng 8 2019

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)(ab+bc+ac)\geq (a+b+c)^2\)

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\geq \left(\frac{1}{b}+\frac{1}{c}+\frac{1}{a}\right)^2\)

Nhân theo vế 2 BĐT trên:

\(\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2(ab+bc+ac).\frac{a+b+c}{abc}\geq [(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})]^2\)

\(\Leftrightarrow \left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\geq [(a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})]^2\)

\(\Leftrightarrow \left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\geq (a+b+c)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

14 tháng 6 2017

sai đề nhé ở đây, min nó là 16 mà 6 căn 6=14 thôi, mà cái điểm rơi cũng ngộ nữa :))

18 tháng 6 2017

Nếu bạn đã nói sai thì cho mình giải thử nhé!

Áp dụng BĐT Bunhiacopxky - Cauchy - Schwarz, ta có: 

\(\left(ax+by+cz\right)^2\le\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)\)\(\Rightarrow\sqrt{a^2+b^2+c^2}\cdot\sqrt{x^2+y^2+z^2}\ge ax+by+cz\)(với a, b, c, x, y, z là những số dương)

\(\Rightarrow\sqrt{2+18+4}\cdot\sqrt{\frac{8}{a^2}+\frac{9b^2}{2}+\frac{c^2a^2}{4}}\ge\sqrt{2}\cdot\frac{2\sqrt{2}}{a}+3\sqrt{2}\cdot\frac{3b}{\sqrt{2}}+2\cdot\frac{ca}{2}\)

\(\Leftrightarrow\sqrt{24}\cdot\sqrt{\frac{8}{a^2}+\frac{9b^2}{2}+\frac{c^2a^2}{4}}\ge\frac{4}{a}+9b+ca\)(1)

Tương tự ta có: \(\sqrt{24}.\sqrt{\frac{8}{b^2}+\frac{9c^2}{2}+\frac{a^2b^2}{4}}\ge\frac{4}{b}+9c+ab\)(2)

                           \(\sqrt{24}\cdot\sqrt{\frac{8}{c^2}+\frac{9a^2}{2}+\frac{b^2c^2}{4}}\ge\frac{4}{c}+9a+bc\)(3)

Cộng vế theo vế (1), (2) và (3) ta được: \(\sqrt{24}\cdot\left(VT\right)\ge\frac{4}{a}+\frac{4}{b}+\frac{4}{c}+9\left(a+b+c\right)+ab+bc+ca\)

\(=\left(\frac{4}{a}+a\right)+\left(\frac{4}{b}+b\right)+\left(\frac{4}{c}+c\right)+\left(2a+bc\right)+\left(2b+ca\right)+\left(2c+ab\right)\)\(+6\left(a+b+c\right)\)\(\ge2\sqrt{\frac{4}{a}\cdot a}+2\sqrt{\frac{4}{b}\cdot b}+2\sqrt{\frac{4}{c}\cdot c}+2\sqrt{2abc}+2\sqrt{2abc}+2\sqrt{2abc}\)\(+6\left(a+b+c\right)\)\(=12+6\left(a+b+c+\sqrt{2abc}\right)\ge12+6\cdot10=72\)

\(\Rightarrow VT\ge\frac{72}{\sqrt{24}}=6\sqrt{6}\)

Dấu ''='' xảy ra khi: \(\hept{\begin{cases}a+b+c+\sqrt{2abc}=10\\VT=6\sqrt{6}\end{cases}\Leftrightarrow a=b=c=2}\)

Vậy ta được ĐPCM