Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c là ba số dương thoả mãn \(0\le a\le b\le c\le1\)
Chứng minh rằng \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Giải :
Từ giả thiết ta có : \(\left(1-b\right)\left(1-c\right)\ge0\Leftrightarrow1-\left(b+c\right)+bc\ge0\Rightarrow bc+1\ge b+c\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)
Tương tự ta cũng có : \(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\) ; \(\frac{c}{ab+1}\le c\le1\left(3\right)\)
Cộng (1) , (2) , (3) theo vế ta được : \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
ta có : a<= 1 => a-1<=0
b<=1 => b-1<=0
=> (b-1)(a-1) >= 0 => ab-a-b+1 >=0 => ab+1>=a+b => 2ab+1>= a+b ( vì ab>=0)
=> 2ab+1+1>= a+b+c ( vì 1>= c)
2ab+2>=a+b+c => 1/2ab+2<=1/a+b+c c/ab+1<= 2c/a+b+c
chứng minh tương tự ta có b/ac+1 <= 2b/a+b+c ; a/bc+1<= 2a/a+b+c
=> a/bc+1+b/ac+1 + c/ab+c <= 2a+2b+2c / a+b+c = 2 ( đpcm )
Ta có: \(0\le a\le b\le1\Rightarrow\hept{\begin{cases}a-1\ge0\\b-1\ge0\end{cases}}\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab-a-b+1\ge0\)
\(\Leftrightarrow ab+1\ge a+b\Leftrightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\)(Vì \(c\ge0\))
Mà \(\frac{c}{a+b}\le\frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)(Vì \(c\ge0\))
\(\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Chứng minh tương tự: \(\frac{b}{bc+1}\le\frac{2b}{a+b+c};\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
\(\Rightarrow\frac{a}{bc+1}+\frac{b}{bc+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\left(đpcm\right)\)
Vào đây đi:
https://hoc24.vn/hoi-dap/question/32718.html
Đặt: \(P=\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\)
Từ đề bài ta có: \(abc\ge0\)
Ta chứng minh: \(\frac{a}{1+bc}\le\frac{2a}{2+abc}\)
\(\Leftrightarrow2a+a^2bc\le2a+2abc\)
\(\Leftrightarrow abc\left(2-a\right)\ge0\)(đúng)
Tương tự ta có:
\(\frac{b}{1+ac}\le\frac{2b}{2+abc}\)
\(\frac{c}{1+ab}\le\frac{2c}{2+abc}\)
\(\Rightarrow P\le\frac{2\left(a+b+c\right)}{2+abc}\)
\(\Rightarrow P-2\le\frac{2\left(a+b+c-2-abc\right)}{2+abc}\)
\(=-\frac{2\left(\left(1-a\right)\left(1-b\right)+\left(1-c\right)\left(1-ab\right)\right)}{2+abc}\)
\(\le0\)(vì \(0\le a\le b\le c\le1\))
\(\Rightarrow P\le2\)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\)
Từ \(\hept{\begin{cases}a\le1\Rightarrow a-1\le0\\b\le1\Rightarrow b-1\le0\end{cases}}\) suy ra \(\left(a-1\right)\left(b-1\right)\ge0\)
\(\Rightarrow ab-a-b+1\ge0\Rightarrow ab+1\ge a+b\Rightarrow2ab+1\ge a+b\left(ab\ge0\right)\)
\(\Rightarrow2ab+2\ge a+b+c\left(1\ge c\right)\)
\(\Rightarrow\frac{1}{2ab+2}\le\frac{1}{a+b+c}\Rightarrow\frac{1}{2\left(ab+1\right)}\le\frac{1}{a+b+c}\Rightarrow\frac{c}{ab+1}\le\frac{2c}{a+b+c}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\end{cases}}\).Cộng theo vế ta có:
\(VT\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)
quá nhiều ý tưởng mà ko ai vào chém à