Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba số lần lượt là a,b,c
Theo đề, ta có: 2/3a=3/4b=1/3c
=>8a=9b=4c
=>a/9=b/8=c/18
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{8}=\dfrac{c}{18}=\dfrac{a+b+c}{9+8+18}=\dfrac{20}{35}=\dfrac{4}{7}\)
Do đó: a=36/7; b=32/7; c=72/7
Gọi ba số cần tìm lần lượt là a,b,c(a,b,c>0)
Theo đề, ta có: \(a=\dfrac{4}{3}b=\dfrac{3}{4}c\)
=>12b=16c=9c
=>a/12=b/9=c/16
Đặt a/12=b/9=c/16=k
=>a=12k; b=9k; c=16k
=>k>0(Vì a>0; b>0;c>0)
a^2+b^2+c^2=481
=>144k^2+81k^2+256k^2=481
=>k^2=1
=>k=1
=>a=12; b=9; c=16
Gọi 3 số dương lần lượt là a,b,c
ta có:a2+b2+c2=181
và b=\(\dfrac{3}{4}\).a=\(\dfrac{2}{3}\).c
=>\(\dfrac{b}{6}=\dfrac{3a}{4.6}=\dfrac{2c}{3.6}=\dfrac{b}{6}=\dfrac{a}{8}=\dfrac{c}{9}\)
=>\(\dfrac{b^2}{36}=\dfrac{a^2}{64}=\dfrac{c^2}{81}=\dfrac{a^2+b^2+c^2}{64+36+81}=\dfrac{181}{181}=1\)=>\(\left\{{}\begin{matrix}a^2=64\\b^2=36\\c^2=81\end{matrix}\right.=>\left\{{}\begin{matrix}a=\pm8\\b=\pm6\\c=\pm9\end{matrix}\right.\)
Vì a,b,c>0=>(a,b,c)=(8,6,9)
a) Gọi khối lượng cuộn thứ nhất là x kg
Vì khối lượng cuộn thứ nhất bằng \(\dfrac{1}{2}\) cuộn thứ 2 nên ta có khối lượng cuộn thứ 2 = 2x kg
Vì khối lượng cuộn thứ nhất bằng \(\dfrac{1}{4}\)cuộn thứ 3 nên ta có khối lượng cuộn thứ 3 = 4x kg
Vì khối lượng cuộn thứ nhất bằng \(\dfrac{1}{6}\) cuộn thứ 4 nên ta có khối lượng cuộn thứ 4 bằng 6x kg
Theo đề bài khối lượng của 4 cuộn là 26kg nên ta có : \(x + 2x + 4x + 6x = 26\) \( \Rightarrow 13x = 26\)
\( \Rightarrow x = 2\)kg
Vậy khối lượng các cuộn dây lần lượt là : 2kg, 4kg, 8kg, 12kg
b) Theo đề bài ta có cuộn 1 dài 100m và ở câu a ta tính được cuộn 1 nặng 2kg
Nên ta có 1 mét dây điện nặng : \(\dfrac{2}{{100}}\)= \(0,02\) kg
Gọi chiều dài 3 tấm vải lần lượt là \(x,y,z\left(x,y,z>0\right)\)
Mà tổng độ dài ba tấm vải là 108, nên ta có:
\(x+y+z=108\)
Sau khi họ bán đi \(\dfrac{1}{2}\) tấm vải thứ nhất, \(\dfrac{2}{3}\) tấm vải thứ hai và \(\dfrac{3}{4}\) tấm vải thứ ba thì số vải còn lại ở ba tấm bằng nhau nên tấm vải thứ nhất còn \(\dfrac{1}{2}\), tấm vải thứ hai còn \(\dfrac{1}{3}\) và tấm vải thứ ba còn \(\dfrac{1}{4}\) :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
\(\Leftrightarrow\dfrac{x+y+z}{2+3+4}=\dfrac{108}{9}=12\)
Do đó:
\(x=12.2=24\)
\(y=12.3=36\)
\(z=12.4=48\)
Vậy độ dài tấm vải thứ nhất là 24 m, độ dài tấm vải thứ hai là 36 m, độ dài tấm vải thứ ba là 48 m.
Gọi chiều dài tấm vải thứ 1 là x, tấm vải thứ 2 là y, tấm vải thứ 3 là z (ĐK: x,y,z > 0 ) (m)
Vì 3 tấm vải dài tổng cộng là 108 (m)
⇒ x+y+z=108 (1)
Sau khi bán đi tấm vải thú 1 được :
1-1/2=1/2
Sau khi bán tấm vải thứ 2 được :
1-2/3=1/3
Sau khi bán tấm vải thứ 3 được :
1-3/4=1/4 (2)
Từ (1) và (2), ta có:
x/2=y/3=z/4=x+y+z/2+3+4=108/9=12
Ta có :
x/2=12⇒x=24
y/3=12⇒y=36
z/4=12⇒z=48
Vậy tấm vải 1 dài 24 m, tấm vải 2 dài 36 m, tấm vải 3 dài 48 m
o(〃^▽^〃)o
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{7}{6}}=\dfrac{b}{\dfrac{11}{9}}=\dfrac{c}{\dfrac{3}{2}}=\dfrac{a+b+c}{\dfrac{7}{6}+\dfrac{11}{9}+\dfrac{3}{2}}=\dfrac{420}{\dfrac{35}{9}}=108\)
Do đó: a=126; b=132; c=162