K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

\(a,b,c\) lập thành CSN nên \(b^2=ac\)

Ta có \(VT=\left(a+c\right)^2-b^2\) 

\(=a^2+2ac+c^2-ac\)

\(=a^2+ac+c^2\)

\(=a^2+b^2+c^2\)

\(=VP\)

Vậy đẳng thức được chứng minh.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ba số \(\frac{2}{{b - a}},\frac{1}{b},\frac{2}{{b - c}}\) theo thứ tự lập thành cấp số cộng nên ta có:

\(\begin{array}{l}\frac{2}{{b - a}} + \frac{2}{{b - c}} = 2.\frac{1}{b} \Leftrightarrow \frac{1}{{b - a}} + \frac{1}{{b - c}} = \frac{1}{b} \Leftrightarrow \frac{{\left( {b - c} \right) + \left( {b - a} \right)}}{{\left( {b - a} \right)\left( {b - c} \right)}} = \frac{1}{b}\\ \Leftrightarrow \frac{{b - c + b - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \Leftrightarrow \frac{{2b - c - {\rm{a}}}}{{{b^2} - ab - bc + ac}} = \frac{1}{b} \Leftrightarrow b\left( {2b - c - {\rm{a}}} \right) = {b^2} - ab - bc + ac\\ \Leftrightarrow 2{b^2} - bc - {\rm{ab}} = {b^2} - ab - bc + ac \Leftrightarrow {b^2} = {\rm{a}}c\end{array}\).

Vậy ba số \(a,b,c\) theo thứ tự lập thành cấp số nhân.

8 tháng 1 2019

Chọn D

Ta có A=(a-c)2+(b-c)2+(b-d)2-(a-d)2=(a-aq2 )2+(aq-aq2 )2+(aq-aq3)2-(a-aq3)2=0

NV
12 tháng 1 2022

Do a;b;c;d là 1 cấp số nhân \(\Rightarrow\left\{{}\begin{matrix}ad=bc\\ac=b^2\\bd=c^2\end{matrix}\right.\)

\(\left(b-c\right)^2+\left(c-a\right)^2+\left(d-b\right)^2\)

\(=b^2+c^2-2bc+c^2+a^2-2ca+d^2+b^2-2bd\)

\(=ac+bd-2ad+bd+a^2-2ca+d^2+ac-2bd\)

\(=a^2-2ab+d^2=\left(a-d\right)^2\)

1 tháng 8 2017

Chọn D

Theo tính chất cấp số nhân, Ta có: ac=2/3 b2. Theo hệ thức lượng trong tam giác vuông, Ta có: b=a.sinB, c=a.cosB. vậy Ta có

5 tháng 1 2021

3: Ta có \(\dfrac{1}{u_{n+1}}=\dfrac{1}{u_n}-1\).

Do đó \(\dfrac{1}{u_{100}}=\dfrac{1}{u_{99}}-1=\dfrac{1}{u_{98}}-2=...=\dfrac{1}{u_1}-99=\dfrac{1}{-2}-99=\dfrac{-199}{2}\Rightarrow u_{100}=\dfrac{-2}{199}\).

7 tháng 12 2019

Chọn C.

Ta có

Từ đó ta có

Đặt  có hệ

Vậy b2 = ac = 36 nên b = 6.