Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\)
\(\Rightarrow R_{tđ}=3,2\left(\Omega\right)\)
\(U=U_1=U_2=U_3=2,4V\)
\(\left\{{}\begin{matrix}I=\dfrac{U}{R_{tđ}}=\dfrac{2,4}{3,2}=0,75\left(A\right)\\I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{6}=0,4\left(A\right)\\I_2=\dfrac{U_2}{R_2}=\dfrac{2,4}{12}=0,2\left(A\right)\\I_3=\dfrac{U_3}{R_3}=\dfrac{2,4}{16}=0,15\left(A\right)\end{matrix}\right.\)
1. bạn tự vẽ sơ đồ mạch điện nhé!
2.
a. \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\Rightarrow R=3,2\left(\Omega\right)\)
b. \(U=U1=U2=U3=2,4\left(V\right)\)(R1//R2//R3)
\(\left\{{}\begin{matrix}I=\dfrac{U}{R}=\dfrac{2,4}{3,2}=0,75\left(A\right)\\I1=\dfrac{U1}{R1}=\dfrac{2,4}{6}=0,4\left(A\right)\\I2=\dfrac{U2}{R2}=\dfrac{2,4}{12}=0,2\left(A\right)\\I3=\dfrac{U3}{R3}=\dfrac{2,4}{16}=0,15\left(A\right)\end{matrix}\right.\)
\(R_{tđ}=\dfrac{1}{\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}}=3,2\left(\Omega\right)\)
\(I_m=\dfrac{U}{R_{tđ}}=\dfrac{2,4}{3,2}=0,75\left(A\right)\)
\(I_1=\dfrac{U}{R_1}=\dfrac{2,4}{6}=0,4\left(A\right)\)
\(I_2=\dfrac{2,4}{12}=0,2\left(A\right)\)
\(I_3=\dfrac{2,4}{16}=0,15\left(A\right)\)
Rtđ được tính theo công thức này nha bạn:
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}\)
Muốn tính R tuowg đương thì phải nghịch đảo nó lên, tức là 16/5 = 3,2 á bạn.
a. \(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\Rightarrow R=3,2\left(\Omega\right)\)
b. \(U=U1=U2=U3=2,4V\)(R1//R2//R3)
\(\left\{{}\begin{matrix}I=U:R=2,4:3,2=0,75A\\I1=U1:R1=2,4:6=0,4A\\I2=U2:R2=2,4:12=0,2A\\I3=U3:R3=2,4:16=0,15A\end{matrix}\right.\)
a)Điện trở tương đương:
\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\)
\(\Rightarrow R_{tđ}=\dfrac{16}{5}\Omega=3,2\Omega\)
b)\(R_1//R_2//R_3\Rightarrow U_1=U_2=U_3=U=2,4V\)
\(I_m=\dfrac{U}{R_{tđ}}=\dfrac{2,4}{3,2}=0,75A\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{6}=0,4A\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{2,4}{12}=0,2A\)
\(I_3=I_m-I_1-I_2=0,15A\)
Bài 3:
a. Cần mắc vào HĐT 220V để sáng bình thường.
b. \(I=P:U=1100:220=5A\)
c. \(A=Pt=1100.2.30=66000\)Wh = 66kWh = 237 600 000J
d. \(R=p\dfrac{l}{S}\Rightarrow l=\dfrac{R.S}{p}=\dfrac{\left(220:5\right).0,45.10^{-6}}{1,10.10^{-6}}=18\left(m\right)\)
Bài 4:
a. \(Q_{toa}=A=I^2Rt=2,4^2\cdot120\cdot25=17280\left(J\right)\)
b. \(Q_{thu}=mc\Delta t=1.4200.75=315000\left(J\right)\)
\(H=\dfrac{Q_{thu}}{Q_{toa}}100\%=\dfrac{17280}{315000}100\%\approx5,5\%\)
Baì 1:
a. \(R=R1+R2=4+6=10\Omega\)
\(I=I1=I2=U:R=18:10=1,8A\left(R1ntR2\right)\)
b. \(R1nt\left(R2\backslash\backslash\mathbb{R}3\right)\)
\(R'=R1+\left(\dfrac{R2.R3}{R2+R3}\right)=4+\left(\dfrac{6.12}{6+12}\right)=8\Omega\)
\(I'=U:R'=18:8=2,25A\)
Bài 2:
a. \(R=\dfrac{R1.R2}{R1+R2}=\dfrac{15.10}{15+10}=6\Omega\)
b. \(U=U1=U2=18V\left(R1\backslash\backslash\mathbb{R}2\right)\)
\(\Rightarrow\left\{{}\begin{matrix}I1=U1:R1=18:15=1,2A\\I2=U2:R2=18:10=1,8A\end{matrix}\right.\)
Tóm tắt:
R1 = 20\(\Omega\)
R2 = 30\(\Omega\)
U = 25V
b. Rtđ = ?\(\Omega\)
c. I = I1 = I2 = ?AA
GIẢI:
b. Điện trở tương đương của đoạn mạch: Rtđ = R1 + R2 = 20 + 30 = 50 (\(\Omega\))
C. Cường độ dòng điện chạy qua mạch điện: I = U : Rtđ = 25 : 50 = 0,5 (A)
Do mạch nối tiếp nên I = I1 = I2 = 0, 5A
a. Sơ đồ bạn tự vẽ nhé!
a,có \(R1//R2//R3\)
\(=>\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{10}+\dfrac{1}{20}+\dfrac{1}{20}\)
\(=>Rtd=5\left(om\right)\)
\(b,=>Im=\dfrac{U}{Rtd}=\dfrac{12}{5}=2,4A\)
\(=>U=U123=U1=U2=U3=12V\)
\(=>\left\{{}\begin{matrix}I1=\dfrac{U1}{R1}=\dfrac{12}{10}=1,2A\\I2=\dfrac{U2}{R2}=\dfrac{12}{20}=0,6A\\I3=\dfrac{U3}{R3}=\dfrac{12}{20}=0,6A\end{matrix}\right.\)
a)\(\dfrac{1}{R_{tđ}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{16}=\dfrac{5}{16}\)
\(\Rightarrow R_{tđ}=\dfrac{16}{5}\Omega=3,2\Omega\)
b)\(I_m=\dfrac{U}{R_{tđ}}=\dfrac{2,4}{3,2}=0,75A\)
\(R_1//R_2//R_3\Rightarrow U_1=U_2=U_3=U=2,4V\)
\(I_1=\dfrac{U_1}{R_1}=\dfrac{2,4}{6}=0,4A\)
\(I_2=\dfrac{U_2}{R_2}=\dfrac{2,4}{12}=0,2A\)
\(I_3=I-I_1-I_2=0,75-0,4-0,2=0,15A\)
\(\dfrac{1}{R}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}=1\Omega\)
\(U=U1=U2=U3=2,4V\)
\(\Rightarrow\left\{{}\begin{matrix}I1=U1:R1=2,4:2=1,2A\\I2=U2:R2=2,4:3=0,8A\\I3=U3:R3=2,4:6=0,4A\end{matrix}\right.\)