K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2018

Theo giả thiết, ba điểm A, B, C thẳng hàng và C nằm giữa A và B.

Vậy vị trí ở hình 3 là đúng.

Chọn C.

7 tháng 5 2019

A(4; 2)

B(3; 0)

C(0; 2)

21 tháng 2 2019

Đáp án: B

Phần bị gạch là phần thuộc (A  B) nhưng không thuộc C nên phần bị gạch biểu thị cho (A  B) \ C.

23 tháng 4 2018

Ta thấy miền tô đậm thuộc tập A ∩ B  nhưng không thuộc tập hợp C.

Do đó, miền tô đậm biểu diễn tập hợp  ( A ∩ B ) \ C

Đáp án B

10 tháng 9 2021

Chả có câu nào sai hết 

Không có câu nào sai hết bạn ơi

a: A(2;4); B(1;0); C(2;2)

vecto AB=(-1;-4)

vecto DC=(2-x;2-y)

Vì ABCD là hình bình hành nên vecto AB=vecto DC

=>2-x=-1 và 2-y=-4

=>x=3 và y=6

c: N đối xứng B qua C

=>x+1=4 và y+0=4

=>x=3 và y=4

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có: \(\overrightarrow {AB}  = \left( {3;2} \right),\overrightarrow {AC}  = \left( { - 1; - 3} \right)\)

Do \(\overrightarrow {AB}  \ne k.\overrightarrow {AC} \) nên A, B, C không thẳng hàng

b) Giả sử tọa độ điểm D là:\(D\left( {{x_D},{y_D}} \right)\)

Ta có: \(\overrightarrow {CD}  = \left( {{x_D} - 0;{y_D} - \left( { - 2} \right)} \right) = \left( {{x_D};{y_D} + 2} \right)\)

Để tứ giác ABCD là hình thang có AB // CD và CD= 2AB thì \(\overrightarrow {CD}  = 2\overrightarrow {AB} \)

Vậy nên \(\overrightarrow {CD}  = 2\overrightarrow {AB}  \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 2.3\\{y_D} + 2 = 2.2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_D} = 6\\{y_D} = 2\end{array} \right.\)

Vậy tọa độ D là: \(D\left( {6;2} \right)\)

22 tháng 4 2017

Đáp án: B

a sai vì trực tâm là giao điểm của ba đường cao, không phải ba đường phân giác.

b sai vì hai đường chéo của hình bình hành không bằng nhau.

c, d, e đúng.

Chọn A