K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2016

1 + 2 + 3 + ... + n = \(\overline{aaa}\)

Ta có : 1 + 2 + 3 + ... + n là dãy số cách đều mỗi số cách nhau 1 đơn vị

Nên : 1 + 2 + 3 + ... + n = \(\frac{\left(n+1\right)n}{2}\)

n ( n + 1 ) : 2 = \(\overline{aaa}\)

n ( n + 1 )  = a . 222

n ( n + 1 ) = 37 . 2 . 3 . a

n ( n + 1 ) = 37 . \(\overline{6a}\)

Mà : n ( n + 1 ) là  tích của hai số tự nhiên liên tiếp 

Mà : 100 < 37 . \(\overline{6a}\) < 1000 => 6a = 36 => a = 36 : 6 = 6 .

Vậy số tự nhiên n là 36 thì thỏa mãn : 1 + 2 + 3 + ... + 36 = 666

16 tháng 10 2016

1 + 2 + 3 + ... + n = aaa

=> (1 + n).n:2 = a.111

=> (1 + n).n = a.3.37.2

=> (1 + n).n = a.6.37

Do (n + 1).n là tích 2 số tự nhiên liên tiếp mà a là chữ số nên a = 6

=> n = 6.6 = 36

Vậy n = 36

30 tháng 7 2016

 1 + 2 + 3 + ... + n = \(\overline{aaa}\)

=> ( n + 1 ) x n : 2 = 3 x 37 x a

=> n x ( n + 1 ) = 6a x 37

Vì n x ( n + 1 ) là tích 2 số liên tiếp nên 6a x 37 là tích 2 số tự nhiên liên tiếp 

=> 6a = 36

=> a = 6 ( vì a \(\in\) N )

Do đó n x ( n + 1 ) = 36 x 37

=> n = 36 ( vì n \(\in N\)*)

Vậy n = 36; a = 6

 

 

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

AH
Akai Haruma
Giáo viên
5 tháng 2

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

26 tháng 2 2021

ý a bạn bt lm ko?

20 tháng 12 2021

không ạ mình hỏi các bạn bài này ạ!

26 tháng 8 2015

ta có a<b<c=>a<c (1)

ta có 11<a mà c<11 =>c<11<a=>c<a (2)

từ (1)&(2)=> a &c mâu thuẫn với nhau vậy a,b,c không tồn tại để thỏa mãn điều kiện trên

tick đúng cho mình đi mình đã làm dùm bạn mòa

29 tháng 10 2016

100\(\le\)\(n^2\)-1=\(\overline{abc}\)\(\le\)999

\(\Rightarrow\)100<101\(\le\)\(n^2\)=\(\overline{abc}\)+1\(\le\)1000

\(\Rightarrow\)\(10^2\)<\(n^2\)<\(32^2\)\(\Rightarrow\)10<n<32

\(\overline{abc}\)-\(\overline{cba}\)=\(n^2\)-1-\(n^2\)+4n-4

\(\overline{abc}\)-\(\overline{cba}\)=(\(n^2\)-\(n^2\))+4n-1-4

\(\overline{abc}\)-\(\overline{cba}\)=0+4n-5

(100.a+10.b+c)-(100c+10b+a)=4n-5

99a-99c=4n-5

\(\Rightarrow\)4n-5\(⋮\)99(1)

Vì 10<n<32\(\Rightarrow\)35<4n<123(2)

Từ (1) và(2) \(\Rightarrow\)4n-5=99

\(\Rightarrow\)n=99+5 :4 =26

\(\overline{abc}\)=\(26^2\)-1

\(\overline{abc}\)=675

\(\overline{cba}\)=576

25 tháng 10 2016

abc = một trong các số có 3 chữ số

OK

2 tháng 9 2023

Bài 1 :

\(\left(7^{2023}-5.7^{2022}\right):7^{2020}\)

\(=7^{2023}:7^{2020}-5.7^{2022}:7^{2020}\)

\(=7^{2023-2020}-5.7^{2022-2020}\)

\(=7^3-5.7\)

\(=7\left(7^2-5\right)\)

\(=7\left(49-5\right)\)

\(=7.44=308\)

Bài 2 : \(n+6⋮n+2\left(n\inℕ\right)\)

\(\Rightarrow n+6-\left(n+2\right)⋮n+2\)

\(\Rightarrow n+6-n-2⋮n+2\)

\(\Rightarrow4⋮n+2\)

\(\Rightarrow n+2\in U\left(4\right)=\left\{1;2;4\right\}\)

\(\Rightarrow n\in\left\{-1;0;2\right\}\)

\(\Rightarrow n\in\left\{0;2\right\}\left(n\inℕ\right)\)

2 tháng 9 2023

Bài 3: 

3a, \(19^{8^{1945}}\) Vì 8 ⋮ 2 ⇒ 81945 ⋮ 2 ⇒ 81945 = 2k (k \(\in\) N*)

Ta có: \(19^{8^{1945}}\) = \(19^{2k}\)  = \((\)192)k = \(\overline{...1}\)k = 1 

3b, 372023 = (374)505. 373 = \(\overline{...1}\)505.\(\overline{..3}\) = \(\overline{...3}\)

3c, 53997 = (534)249.53 = \(\overline{...1}\)249. 53 = \(\overline{...3}\) 

3d, 84567 = (842)283.84 = \(\overline{...6}\)283 . 84 = \(\overline{...4}\)