K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

B=1+11+112+113+...+1199

B=(1+11+112+113+114+115)+.....+(1194+1195+1196+1197+1198+1199)

B=(1+11+112+113+114+115)+....+1194.(1+11+112+113+114+115)

B=177145+....+1194.177145

B=177145.(1+...+1194)

B=35429.5.(1+...+1194)  \(⋮\)5

Vậy B\(⋮\)5

Chúc bn học tốt

4 tháng 4 2020

B=1+11+112+...+1199

=(1+11+112+113+114)+(115+116+117+118+119)+...+(1195+1196+1197+1198+1199)

=1(1+11+112+113+114)+115(1+11+112+113+114)+...+1195(1+11+112++113+114)

=1.16105+115.16105+...+1195.16105 chia hết cho 5

Vậy B chia hết cho 5.

Học tốt!

4 tháng 4 2020

Ta có : B =1+11^1+11^2+11^3+...+11^99                                                                                                                                                                =>11B=11+11^2+11^3+11^4+...+11^100                                                                                                                                                            =>10B=(11+11^2+11^3+11^4+...+11^100)-(1+11^1+11^2+11^3+...+11^99)                                                                                                        =>10B=11^100-1        mà 11 mũ 100 có tận cùng =1 nên 11 mũ 100 -1 có tận cùng =0 nên chia hết cho 5.                                                    =>B =(11^100-1):10 cũng có tận cùng bằng 0 nên cũng chia hết cho 5.                                                                                                                              Vậy B chia hết cho 5.                             (lưu ý: ^ là mũ)       

\(B=1+11^1+11^2+11^3+...+11^{99}\\ 11B=11+11^2+...+11^{100}\\ 11B-B=\left(11+11^2+...+11^{100}\right)-\left(1+11^1+11^2+...+11^{99}\right)\\ 10B=11^{100}-1\\=>B=\frac{11^{100}-1}{10} \)

Sau đó giải thích: ta có 11^100 có chữ số tận cùng là 1=> 11^100-1 có chữ số tận cùng là 0 => (11^100-1)/10 chia hết cho 5. Kết luận

4 tháng 4 2020

Dễ thấy các số 1, 111, 112, ..., 1199 đều có chữ số tận cùng là 1. Mà B có 100 số hạng nên có chữ số tận cùng là 0. Do đó B chia hết cho 5.

5 tháng 10 2015

B= 311+312+313+...+3101

=>3B= 312+313+314+...+3101

=>3B-B= 312+313+314+...+3101-311 -312-313-...-3101

=>2B=3101-311

=>B= 2101-311 :2

6 tháng 7 2018

A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)

A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)

A=3.(1-1/400)

A=3.399/400

A=1197/400

6 tháng 7 2018

A=3.(1/1.2+1/2.3+1/3.4+.....+1/399.400)

A=3.(1/1-1/2+1/2-1/3+......+1/399-1/400)

A=3.(1-1/400)

A=3.399/400

A=1197/400

5 tháng 7 2018

Bài 1: Tính nhanh:

A = 3/1*2 + 3/2*3 + 3/3*4 + ... + 3/399*400

=>3A = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/399*400

    3A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/399 - 1/400

    3A = 1 - 1/400

      3A = 400/400 - 1/400

      3A = 399/400

        A = 399/400 : 3

        A = 399/400 . 1/3

        A = 133/400.

Có gì ko hiểu bn ib mk nha.^^

5 tháng 7 2018

\(A=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+...+\frac{3}{399.400}\)

\(A=3.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)

\(A=3.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)

\(A=3.\left(1-\frac{1}{400}\right)\)

\(A=3.\frac{399}{400}\)

\(A=\frac{1197}{400}\)

\(B=\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{399.400}\)

\(B=5.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{399.400}\right)\)

\(B=5.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{399}-\frac{1}{400}\right)\)

\(B=5.\left(1-\frac{1}{400}\right)\)

\(B=5.\frac{399}{400}\)

\(B=\frac{399}{80}\)

\(C=\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\)

\(C=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\)

\(C=\frac{1}{5}-\frac{1}{151}\)

\(C=\frac{146}{755}\)

\(D=\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+...+\frac{3}{149.151}\)

\(D=\frac{3}{2}.\left(\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{149.151}\right)\)

\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{149}-\frac{1}{151}\right)\)

\(D=\frac{3}{2}.\left(\frac{1}{5}-\frac{1}{151}\right)\)

\(D=\frac{3}{2}.\frac{146}{755}\)

\(D=\frac{219}{755}\)

\(E=\frac{11}{1.3}+\frac{11}{3.5}+\frac{11}{5.7}+...+\frac{11}{99.101}\)

\(E=\frac{11}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(E=\frac{11}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(E=\frac{11}{2}.\left(1-\frac{1}{101}\right)\)

\(E=\frac{11}{2}.\frac{100}{101}\)

\(E=\frac{550}{101}\)

_Chúc bạn học tốt_

12 tháng 9 2018

A = 111 + 112 + 113 + ... + 1199 + 11100

= ( 111 + 112 ) + ( 113 + 114 ) + ( 115 + 116 ) + ..... + ( 1199 + 11100 )

= 11 ( 1 + 11 ) + 113 ( 1 + 11 ) + 115 ( 1 + 11 ) + .... + 1199 ( 1 + 11 )

= ( 1 + 11 ) ( 11 + 113 + 115 + .... + 1199 )

= 12 ( 11 + 113 + 115 + .... + 1199 ) chia hết cho 12

12 tháng 9 2018

Ta có \(11^1+11^2+11^3+...+11^{99}+11^{100}=\left(11^1+11^2\right)+\left(11^3+11^4\right)+..+\left(11^{99}+11^{100}\right)\)

\(=\left(11^1+11^2\right)+11^2.\left(11^1+11^2\right)+..+11^{98}.\left(11+11^2\right)\)

\(=132+11^2.132+...+11^{98}.132\)

\(=132.\left(11^0+11^2+...+11^{98}\right)\)

Có \(132⋮12\)nên \(132.\left(11^0+11^2+...+11^{98}\right)⋮12\)

Vậy \(11^1+11^2+11^3+...+11^{99}+11^{100}⋮12\)