Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(\frac{1}{4^2}< \frac{1}{4.5};\frac{1}{6^2}< \frac{1}{5.6};...;\frac{1}{2006^2}< \frac{1}{2005.2006}\)
\(\Rightarrow B=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2006^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)
\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{2006}=\frac{1001}{4012}\)
Mà \(\frac{1001}{4012}< \frac{334}{2007}\Rightarrow B< \frac{334}{2007}\)
\(B< \frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2006.2008}\)
\(2B< \frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2006.2008}=\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2008}=\frac{1}{4}-\frac{1}{2008}=\frac{501}{2008}\)\(B< \frac{501}{4016}< \frac{501}{4014}< \frac{668}{4014}=\frac{334}{2007}\)
Vậy:.....
Mik lười quá bạn tham khảo câu 3 tại đây nhé:
Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath
\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)
\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)
\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)
\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
a) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}<\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{2006\cdot2007}\)
=> \(<\frac{1}{4}-\frac{1}{2007}<\frac{1}{4}\)
\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}<\frac{1}{4}\)
b) \(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{2007\cdot2008}\)
=> \(>\frac{1}{5}-\frac{1}{2008}>\frac{1}{5}\)
\(vậy:\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)
1) \(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=0+\frac{1}{16}\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}=\left(\frac{1}{4}\right)^2\)
\(\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\frac{1}{x}=\frac{1}{4}+\frac{2}{3}=\frac{3}{12}+\frac{8}{12}\)
\(\frac{1}{x}=\frac{11}{12}\)=> x*11=1*12
=> x=12/11
x=1,090 909 091 . Vậy x=1,090 909 091
mình không chắc nữa
chúc bạn học tốt!^_^
b = (2m + 1)^2 = 4m^2 + 4m + 1
=> A = (a - 1)(b - 1) = 4m(m -1).4m(m +1)
m(m -1) và m(m+1) đều chia hết cho 2 => A chia hết cho 4.2.4.2 = 64
vì: A chứa m(m-1)(m+1) là tích 3 số nguyên liên tiếp chia hết cho 3
3 và 64 nguyên tố cùng nhau => A chia hết cho 64.3 = 192
A = 3 + 6 + 9 + ... + 2007
=>A = 3( 1 + 2 + 3 + ... + 669 )
=> A = \(3\cdot\left(\frac{670\cdot669}{2}\right)\)
=> A = \(3\cdot224115\)= 672345
B = \(2\cdot53\cdot12+4\cdot6\cdot87-3\cdot8\cdot40\)
=> B = 24 * 53 + 24 * 87 - 24 * 40
=> B = 24 * ( 53 + 87 - 40 )
=> B = 24 * 100 = 2400
c) ta có Tử số = \(2006\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2007}\right)\)
Mẫu số = \(\frac{2007-1}{1}\)+\(\frac{2007-2}{2}\)+...+\(\frac{2007-2006}{2006}\)
=> Mẫu số = \(\frac{2007}{1}\)\(-1\)+ \(\frac{2007}{2}\)\(-1\)+ ... + \(\frac{2007}{2006}\)\(-1\)
=> Mẫu số = \(\frac{2007}{1}\)+ \(\frac{2007}{2}\)+ ... + \(\frac{2007}{2006}\)- ( 1 + 1 + 1 + ... + 1 ) ( 1 + 1 + ... + 1 có 2006 số hạng 1 )
=> Mẫu số = ( 2007 - 2006 ) + \(2007\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}\right)\)
=> Mẫu số = \(\frac{2007}{2007}\)+ \(2007\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2006}\right)\)
=> Mẫu số = \(2007\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2007}\right)\)
=> C = \(\frac{TS}{MS}\)= \(\frac{2006}{2007}\)
Ta có
\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(........\)
\(\frac{1}{8^2}< \frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
Mà \(\frac{3}{8}< 1\)
\(\Rightarrow B< 1\)
Đặt A =\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)
\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{7}-\frac{1}{8}\)
\(A=1-\frac{1}{8}< 1\)
\(\Leftrightarrow B< A< 1\)
mik sẽ trả lời pạn sau nhé ..sorry mik pạn ti......
Mai ơi! bạn khùng hả? ko trả lời thì thôi lại còn vào chỗ trả lời để sorry