Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3+2^2+2^3+2^4+..+2^{2001}\)
\(\Rightarrow A=1+2+2^2+2^3+2^4+...+2^{2001}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2002}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2002}\right)-\left(1+2+3^2+...+2^{2001}\right)\)
\(\Rightarrow A=2^{2002}-1\)
Vì \(2^{2002}-1< 2^{2003}\) nên \(A< 2^{2003}\)
Ta có:
\(C=4+3^2+3^3+...+3^{2003}+3^{2004}\)
\(C=1+3+3^2+3^3+...+3^{2003}+3^{2004}\)
\(\Rightarrow3C=3+3^2+3^3+...+3^{2004}+3^{2005}\)
\(\Rightarrow3C-C=\left(3+3^2+3^2+...+3^{2004}+3^{2005}\right)-\left(1+3+3^2+3^3+...+3^{2003}+3^{2004}\right)\)
\(\Rightarrow2C=3^{2005}-1\)
\(\Rightarrow C=\left(3^{2005}-1\right):2< 3^{2005}\)
\(\Rightarrow C< 3^{2005}\)
\(B=4+3^2+3^3+...+3^{2004}\)
\(\Rightarrow B=1+3+3^2+3^3+...+3^{2004}\)
\(\Rightarrow3B=3+3^2+3^3+...+3^{2005}\)
\(\Rightarrow3B-B=3+3^2+3^3+...+3^{2005}-1-3-3^2-...-3^{2004}\)
\(\Rightarrow2B=3^{2005}-1\)
\(\Rightarrow B=\frac{3^{2005}-1}{2}< \frac{3^{2005}}{2}< 3^{2005}=C\)
Vậy B < C
a/
$A-3=\frac{2003}{2004}+\frac{2004}{2005}+\frac{2005}{2003}-3$
$=(1-\frac{1}{2004})+(1-\frac{1}{2005})+(1+\frac{2}{2003})-3$
$=\frac{2}{2003}-\frac{1}{2004}-\frac{1}{2005}$
$=(\frac{1}{2003}-\frac{1}{2004})+(\frac{1}{2003}-\frac{1}{2005})$
$>0+0=0$
$\Rightarrow A>3$
b/
$B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{2015^2}$
$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}$
$=1-\frac{1}{2015}<1$
Ta có : \(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)
\(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)
Vì \(\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
Nên : \(\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)
Ta có :
\(B=4+3^2+3^3+...+3^{2003}+3^{2004}\)
\(B=1+3+3^2+3^3+...+3^{2003}+3^{2004}\)
\(3B=3+3^2+3^3+...+3^{2004}+3^{2005}\)
\(3B-B=\left(3+3^2+3^3+...+3^{2004}+3^{2005}\right)-\left(1+3+3^2+...+3^{2003}+3^{2004}\right)\)
\(2B=3^{2005}-1\)
Vì : \(2B=3^{2005}-1< 3^{2005}=A\)
Nên \(B< A\) hay \(A>B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
A = \(\frac{2004-2003}{2004+2003}\)và B = \(\frac{2004^2-2003^2}{2004^2+2003^2}\)
Ta đặt : 2004 = x
2003 = y
Theo tính chất cơ bản của phân thức , ta có :
\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+y^2+2xy}\) ( 1 )
Vì x > 0 , y > 0 nên x2 + y2 + 2xy > x2 + y2
\(\Rightarrow\frac{x^2-y^2}{x^2+y^2+2xy}< \frac{x^2-y^2}{x^2+y^2}\) ( 2 )
Từ ( 1 ) và ( 2 )
\(\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
Vậy A < B
https://h.vn/hoi-dap/tim-kiem?q=so+s%C3%A1nh+2+ph%C3%A2n+s%E1%BB%91++A=+2004%5E2003++1+/+2004%5E2004++1++B=2004%5E2002+1/2004%5E2003++1&id=238505
B=4+32+33+.....+32003
<=> B=4+(32+33+.....+32003)
Đặt A=32+33+......+32003
=> 3A=3(32+33+....+32003)
=> 3A=33+34+....+32004
=> 3A-A=(33+34+....+32004)-(32+33+....+32003)
=> 2A=32004-32
=> \(A=\frac{3^{2004}-3^2}{2}\)
Thay \(A=\frac{3^{2004}-3^2}{2}\)và B, ta có:
\(B=2^2+\frac{3^{2004}-3^2}{2}\)
=> B<C