K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2022

b= 31 + 32 +33+...+3300

3b= 32 +33+34+...+3301

3b-b=( 32 +33+34+...+3301) - ( 31 + 32 +33+...+3300)

2b= 3301 - 31

b= (3301 - 31) :2

22 tháng 10 2023

\(B=3^1+3^2+3^3+...+3^{300}\\=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{299}+3^{300})\\=3\cdot(1+3)+3^3\cdot(1+3)+3^5\cdot(1+3)+...+3^{299}\cdot(1+3)\\=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{299}\cdot4\\=4\cdot(3+3^3+3^5+...+3^{299})\)

Vì \(4\cdot(3+3^3+3^5+...+3^{299})\vdots2\)

nên \(B\vdots2\)

22 tháng 10 2023

B=(3+32)+(33+34)+...+(3299+3300)

B=3(1+3)+33(1+3)+...+3299(1+3)

B=3.4+33.4+...+3299.4

B=4(3+33+...+3299) chia hết cho 2 vì 4 chia hết cho 2

vậy B chia hết cho 2

1 tháng 11 2023

\(B=3^1+3^2+3^3+...+3^{100}\\3B=3^2+3^3+3^4+...+3^{101}\\3B-B=(3^2+3^3+3^4+...+3^{101})-(3^1+3^2+3^3+...+3^{100})\\2B=3^{101}-3\\\Rightarrow 2B+3=3^{101}\)

Mặt khác: \(2B+3=3^n\)

\(\Rightarrow 3^n=3^{101}\\\Rightarrow n=101(tm)\)

Vậy n = 101.

1 tháng 11 2023

cảm ơn bạn nha :))

3 tháng 3 2019

ta có: \(\frac{31+32+35}{34}=\frac{31}{34}+\frac{32}{34}+\frac{35}{34}.\)

mà \(\frac{31}{32}>\frac{31}{34};\frac{32}{33}>\frac{32}{34}\)

\(\Rightarrow\frac{31}{32}+\frac{32}{33}+\frac{35}{34}>\frac{31}{34}+\frac{32}{34}+\frac{35}{34}=\frac{31+32+35}{34}\)

17 tháng 8 2023

\(B=3+3^2+3^3+...+3^{300}\)

\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{298}+3^{299}+3^{300}\right)\)

\(B=\left(3+3^2+3^3\right)+3^3\cdot\left(3+3^2+3^3\right)+...+3^{297}\cdot\left(3+3^2+3^3\right)\)

\(B=39+3^3\cdot39+...+3^{297}\cdot39\)

\(B=39\cdot\left(1+3^3+...+3^{297}\right)\)

Vậy B chia hết cho 39

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:

$A=1+3+3^2+3^3+....+3^{30}$

$3A=3+3^2+3^3+....+3^{31}$

$3A-A=(3+3^2+3^3+...+3^{31})-(1+3+...+3^{30})$

$2A=3^{31}-1$

$A=\frac{3^{31}-1}{2}=\frac{3.3^{30}-1}{2}$

$=\frac{3.9^{15}-1}{2}$

Ta thấy: Đối với $9^n$ thì $n$ chẵn số này sẽ có tận cùng là $1$, $n$ lẻ sẽ có tận cùng là $9$

Vậy $9^{15}$ tận cùng là $9$

$\Rightarrow 3.9^{15}$ tận cùng là $7$

$\Rightarrow 3.9^{15}-1$ tận cùng là $6$

$\Rightarrow A=\frac{3.9^{15}-1}{2}$ tận cùng là $3$ hoặc $8$

Do đó $A$ không thể là scp.

 

29 tháng 12 2016

tích tao nhé ahihi

29 tháng 12 2016

không chia hết cho 120 vì tổng trên là số lẻ nên không chia hết cho một số chẵn

2 tháng 6 2020

A= (1/31 + 1/32+ ...+ 1/40) +(1/41 +1/42 +...+ 1/50) + (1/51 +1/52 +...+1/60)

A>10/40 + 10/50 + 10/60

A> 1/4 + 1/5 + 1/6

Ta thấy 1/4 + 1/6 = 10/24> 10/25 = 2/5

suy ra A > 1/5+2/5 = 3/5 suy ra đccm

16 tháng 12 2021

  31+32+33+34+35-11-12-13-14-15=100