\(2015x^{100}+2015x^{99}+2015x^{98}+...+2015x+2016\)

khi x=2016.tính A(x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2016

x=2016 =>x-1=2015

Suy ra: \(C=x^{2010}-2015x^{2009}-2015x^{2008}-...-2015x+1\)

\(=x^{2010}-\left(x-1\right).x^{2009}-\left(x-1\right).x^{2008}-...-\left(x-1\right).x+1\)

\(=x^{2010}-x^{2010}+x^{2009}-x^{2009}+x^{2008}-...-x^2+x+1\)

\(=x+1=2016+1=2017\)

3 tháng 5 2018

Ta có :\(x=2014\Rightarrow2015=x+1\)

\(\Rightarrow f\left(2014\right)=x^{17}-\left(x+1\right)x^{2016}+\left(x+1\right)x^{2015}-.....+\left(x+1\right)x-1\)

\(=x^{17}-x^{17}-x^{2016}+x^{2016}+x^{2015}-....+x^2+x-1\)

\(=x-1=2014-1=2013\)

3 tháng 5 2018

Cảm ơn bạn nhiều !

2 tháng 5 2018

ở cuối có 1 số 1 thôi các bạn nhé!

23 tháng 2 2017

=> \(f\left(x\right)=x^{2014}-\left(2014+1\right)x^{2013}+\left(2014+1\right)x^{2012}+...-\left(2014+1\right)x+2014+1\)

Mà x = 2014

=> \(f\left(2014\right)=x^{2014}-\left(x+1\right)x^{2013}+\left(x+1\right)^{2012}+...-\left(x+1\right)x+x+1\)

\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}-x^{2012}+....-x^2-x+x+1\)

\(=1\)

=> f(2014) = 1

23 tháng 2 2017

thank nha

29 tháng 3 2020

P(x) = x2016 - 2015x2015 - 2015x2014 - ... - 2015x2 - 2015x 

<=> P(x) = x2016 - 2016x2015 + x2015 - 2016x2014 + x2014 - ... - 2016x2 + x2 - 2016x + x 

<=> P(2016) = 20162016 - 2016.20162015 + 20162015 - 2016.20162014 + 20162014 -...- 2016.20162 + 20162 - 2016.2016 + 2016 

<=> P(2016)=20162016 - 20162016 + 20162015 - 20162015 + 20162014 - ... - 20163 + 20162 - 20162 + 2016

<=> P(2016) = 2016

Vậy P(2016) = 2016

29 tháng 3 2020

Ta có:

P(2016) = 20162016 - 2015 . 20162015 - 2015 . 20162014 -.....- 2015 . 20162 - 2015 . 2016 - 1

P(2016) = 20162016 - ( 2016 - 1 ) . 20162015 - ( 2016 -1 ) . 20162014 - ..... - ( 2016 - 1 ) . 20162 - ( 2016 - 1 ) . 2016 - 1

P(2016)= 20162016 - 20162016 + 20162015 - 20162015 + 20162014  - ..... - 20163 + 20162 - 20162 + 2016 - 1

P(2016) = 2016 - 1

P(2016) = 2015.